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Abstract. Dental development assessment (DDA) is crucial for orthodon-
tic diagnosis and treatment planning. Recent advances in deep learning
have shown promising results in dental image analysis tasks. However,
the study of dental development staging, particularly in pediatric den-
tal development, remains underexplored. This is primarily attributed to
the scarcity of publicly available datasets. In this paper, we present a
pediatric Dental Development Staging Dataset(DentalDS). To the best
of our knowledge, this is the first publicly available dataset for pediatric
DDA. It comprises 2,583 orthopantomogram (OPG) images, with a total
of 18,081 annotated teeth. Furthermore, we propose a dental develop-
ment staging network (DDSNet) designed to address the classification
of tooth development stages. In DDSNet, we propose a Region-Instance
Cross-Attention (RICA) block and a Multi-Expert Collaborative Clas-
sification (MECC) block to enhance the fine-grained feature fusion and
classification accuracy of dental development stages. To evaluate the ef-
fectiveness of the proposed DDSNet, we conducted experiments on the
DentalDS. Our proposed method achieves the state-of-the-art accuracy
of 76.3% and an F1-score of 77.1%, outperforming the existing approach
method by 1.9% in accuracy and 3.8% in Fl-score. To facilitate further
research in pediatric orthodontic treatment, code and dataset will be
available at https://github.com/ybupengwang/DDSNet.

Keywords: Dental development staging - Multi-expert collaborative -
Cross attention.

1 Introduction

The World Health Organization (WHO) considers malocclusion one of the ma-
jor oral health issues, following caries and periodontal disease. Its prevalence
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shows significant variation across different countries, sexes, and age groups, with
an estimated range of 39% to 93% in the pediatric population [2]. Orthodontic
treatment is the primary method for correcting malocclusion. In clinical prac-
tice, dental development assessment (DDA) is essential for formulating appropri-
ate treatment plans [I5]. Orthodontists assess the corresponding developmental
stage of each tooth using orthopantomogram (OPG) images, according to the
Demirjian method [6]. This method divides tooth development levels into eight
stages. However, determining the dental development stage is a challenging and
time-consuming process, heavily relying on the orthodontist’s experience. There-
fore, it is necessary to develop a computer-aided diagnosis method to assist clin-
icians in DDA, so as to carry out accurate and reliable treatment planning.

Recently, deep learning models have been extensively utilized in the field of
digital dentistry, including dental region segmentation [BIT6ITOI3T], tooth detec-
tion and numbering [25JT1], teeth reconstruction [20029] and dental disease detec-
tion [30/3]. Deep learning based methods [8126] have also been applied in DDA,
and they have achieved promising results, further demonstrating the significant
potential of deep learning approaches in pediatric DDA tasks. However, there are
still several limitations when applying these methods to pediatric DDA tasks.
Firstly, most previous works were trained and evaluated on in-house datasets
and there is no publicly available dataset for model development. Secondly, the
majority of them focused on dental development for all age groups, rather than
focused on DDA during the pediatric developmental period. Finally, the dental
structures in pediatric OPG images are more complex than those in adults, as
they include unerupted permanent tooth buds. These tooth buds are very similar
in shape, which can easily cause semantic confusion.

To address these issues, we first constructed a dental development staging
dataset called DentalDS. It includes 2,583 images with annotations for 18,081
teeth of patients aged between 3 and 15 years. Further, we propose an end-
to-end dental development staging network called DDSNet, which consists of
three components: tooth localization, feature encoding, and dental development
stage classification. For tooth localization, we adopt the traditional DETRII]
model, which leverages the Transformer architecture to directly predict bound-
ing boxes without relying on region proposals. For feature encoding, we intro-
duce the Region-Instance Cross-Attention (RICA) block to capture rich and
fine-grained features. For dental development stage classification, we propose a
Multi-Expert Collaborative Classification (MECC) block, which enhances clas-
sification performance by leveraging the collaboration of multiple experts. The
main contributions in this paper can be summarized as follows:

— We create a pediatric dental development assessment dataset called Den-
talDS, which is the first public dataset specifically for pediatric DDA.

— We propose an end-to-end network called DDSNet for DDA. In the DDSNet,
we introduce the RICA and MECC, which enhance the fusion of region and
tooth instance features, improving classification accuracy.

— Extensive experiments were conducted on the proposed DentalDS to estab-
lish benchmarks for pediatric DDA. The results show that our model outper-
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forms previous state-of-the-art (SOTA) networks and can serve as a strong
baseline for the pediatric DDA task.

2 Dataset

As shown in table [I} compared to mainstream dental datasets, our dataset ad-
dresses the limitations of existing datasets in pediatric dental development stag-
ing. Notably, the dataset in Ong et al. [I9] is not publicly available and excludes
cases with orthodontic treatment or apical lesions, whereas ours includes such
complexities to better reflect real-world clinical scenarios. The acquisition pro-
cess of the DentalDS is illustrated in Figure

Table 1. Comparison with existing dental datasets. @, @, @ and @ represent the
detection, segmentation, age estimation and dental development staging, respectively.

Reference Modality Image Number Year Task Age Available
Dental X-ray [27] X-ray 520 2016 O - 4
Vila et al. [26] OPG 2289 2020 ©) 4.5-89.2 X
CTooth+ [4] CBCT 168 2022 @ - v
DENTEX [12] X-ray 1005+1571 2023 @@ >12 v
Zhang et al. [30] OPG 193 2023 @@ 2-13 v
Dong et al. [§] OPG 673 2023 @@ 3-14 X
Ong et al. [19] OPG 5133 2024 @@ 4-16 X
DentalDS(ours) OPG 2583 2025 @@ 3-15 v

DentalDS was collected from patients who visited the pediatric orthodontics
department between January 2021 and May 2024. Due to privacy concerns, we
eliminate all personal information except for gender and age. During data collec-
tion, radiologists first screen and exclude unqualified images based on the IQSC.
After the initial selection, the chosen images will be reviewed by two orthodon-
tists to ensure their quality. Finally, a total of 2,583 images were selected.

The data annotation was divided into two steps: (a) localization of each left
permanent mandibular tooth with a bounding box, and (b) annotation of tooth
development stages based on the Demirjian method [6]. All images in DentalDS
were manually annotated in detail using LabelMe [23] by three dental experts,
each with at least ten years of experience. The annotation was carried out in the
following steps: Two experts were randomly assigned anonymous images each to
complete the image annotation independently. Then, the third expert reviewed
the annotation quality. When ambiguities were identified during the review, they
voted on the annotation results, and the one with the most votes was the final
result. Finally, the dataset was reviewed and verified by all experts to ensure the
accuracy of the annotation. A total of 18,081 teeth were annotated. Cohen’s
kappa showed substantial agreement. This study was approved by the Ethics
Committee of Tianjin Stomatological Hospital (Approval No. YPH2024-S-024)
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Fig. 1. Production process of DentalDS: 1) use the pediatric image quality scoring
criteria(IQSC) to manually screen and obtain the target images; 2) Label and review
the tooth positions and developmental stages. The dataset was divided into training
set (2,048 images) and testing set (535 images).

3 Method

We propose an end-to-end network called DDSNet for pediatric DDA, which
consists of three components, as illustrated in Fig. 2] In this section, we present
each component of the proposed model in detail.

3.1 Tooth Localization

We adopt DETR [I] with ResNet-50 pre-trained on ImageNet-1K [7] as the tooth
localization model. The input image I € R *W*C ig fed into the DETR model,
where H,W and C represent the height, width, and channel number, respec-
tively. The model then extracts seven bounding boxes, along with an additional
region of interest (ROI) box. Seven bounding boxes correspond to the seven
tooth instances, ranging from the central incisor to the second molar. The ROI
is the smallest region that covers the seven teeth. These bounding boxes are
used to crop the tooth instances from the original image. After cropping, each
cropped tooth instance is resized to Sx S, denoted as {I;,t = 1,2,...,7}. The
ROI image is resized to M x M, denoted as I,..

3.2 Region-Instance Cross-Attention Block

Both local and global features are crucial for classification tasks. CNNs [14)24]
are limited by the convolutional kernel, which prevents them from capturing
global features. Transformer-based networks [9I13] can model global information
and long-range dependencies, but they are unable to capture the local features
of the image. To enable the model to focus on the ROI of the image and improve
the integration of instance and region features, we propose a RICA block to
enhance the dental development stage classification performance by effectively
leveraging both region and instance features.
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Fig. 2. Overall structure of the proposed DDSNet, which consists of three components:
tooth localization; feature encoding and tooth development classification.

Each tooth instance I; is divided into patches and embedded into feature
vectors. We use P, € RV*P to denote the patch embedding with positional
encoding of ¢-th tooth, where N is the number of patches, D is the dimension
of the embedding. Then, P; is processed through multiple Transformer blocks,
which consist of multi-head self-attention and a feed-forward network [9]. The
output of I-th Transformer block is F} € RV*P. Next, the image I, is passed
through ResNet-34 [14], which extracts the region features. To facilitate sub-
sequent feature fusion, these features are flattened and transformed by a linear
layer to obtain F,. € R% %P To capture both tooth region and instance features,
we employ a cross-attention mechanism to perform the region-instance feature
fusion. Specifically, instance features F| are used as queries, regional features F,
are adopted as keys and values. We perform the cross-attention between F} and
F, as follows:

T
Z; = softmax (QK ) -V (1)
Vi

where Z, € is the final fused embedding , @Q is the instance features F},
K and V are the regional features F,., dj is the dimension D. By combining
region features extracted through CNN and instance features captured through
ViT, the hybrid features are expected to effectively enhance the performance of
tooth development staging.

RNXD

3.3 Multi-Expert Collaborative Classification Block

Inspired by V-MOE [22] in image classification tasks, we propose a MECC block.
It adopts a gate network GG that dynamically selects expert based on the current
task ¢ (i.e., each tooth instance classification is a task), while also allowing other
experts to assist when necessary. The difference between our MECC block and
V-MokE is that MECC does not replace the MLP layer in the Transformer block.
Instead, we adopt the multi-expert structure at the classification head, and it
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fuses the outputs of experts during the classification stage based on the gating
weights.

Specifically, the final fused embedding Z; is average pooled to obtain hidden
state hy € RP. Then, the expert weights w; are formulated as follows:

wy = Softmax(W; - hy) (2)

where W, € RE*P denotes the weight matrix of G for task t, and E is the
number of experts. Each element w; . in w represents the gate weight for task ¢
and expert e, which reflects the expert’s confidence in handling a given task ¢.

Each expert &, is a simple fully connected layer. Let Pf € R* denote the
output of the &, for a given input h;, where cls refers to the number of tooth
development classification grades. To handle uncertainty in classification, we in-
troduce a threshold « to measure the confidence level of the model’s classification
decision. If the highest value in w; falls below «, all experts contribute to the
decision-making process. Otherwise, the final decision is based on the prediction
of the main expert, and the index of the main expert is defined as:

€main = arg Hlé%X Wt e (3)

The G allows the model to be more flexible in handling uncertainty, especially
when the current task is complex. The final output for task  is:
Pemain if Wy e in >«
Yt = ! N e N N (4)
Yooy Wee - P otherwise

4 Experiment

4.1 Implementation Details

In the experiments, the input images I, tooth instances I; and ROI images I,
are resized to 1200x1200, 224x224 and 512x512, respectively. The number of
experts and the threshold « are set to 5 and 0.7, respectively. We use the AdamW
optimizer [I8] with an initial learning rate of 10~ which is decayed using a
cosine annealing schedule, and cross-entropy as the loss function. Training is
conducted for 400 epochs with a batch size of 16. The parameters of the DETR
model are updated during the first 300 epochs. We adopt ViT [9] pre-trained on
ImageNet-21K [21] as the backbone for tooth instance feature extraction. During
the last 100 epochs, the layer normalization of the ViT, RICA and MECC blocks
are updated, while the DETR is frozen. Our framework was implemented using
Pytorch, all experiments were conducted on a single Nvidia RTX A6000.

4.2 Comparisons With Other Methods

To evaluate the effectiveness of our proposed DDSNet, we conducted experi-
ments with several classification methods, including ResNet-34 [I4], EfficientNet
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Table 2. Performance comparisons with other SOTA methods on DentalDS.

Method Acc(%)  Precision(%)  Recall(%)  Fl-score(%)
Resnet34 [14] 68.6 72.7 68.6 67.7
EfficientNet [24] 65.4 71.5 65.4 64.7
Swin Transformer [17] 73.3 75.9 73.3 72.3
TransFG [13] 73.9 76.8 73.9 73.4
VDPF[28] 744 775 744 733
DDSNet(ours) 76.3 78.0 76.3 77.1

[24], Swin Transformer [I7], TransFG [13], and VDPF [28]. These models are
widely used in image classification tasks and have demonstrated strong perfor-
mance. We evaluate performance using the following metrics: accuracy (Acc),
precision, recall, and Fl-score. We use average=’weighted’; thus, the recall
is mathematically equivalent to accuracy. The comparison with state-of-the-art
methods is presented in Table 2l Our DDSNet achieves 76.3% Acc and 77.1%
Fl-score on DentalDS. The Acc and Fl-score surpass the second best method
VDPF [28] by 1.9% and 3.8%, respectively. Our method effectively combines re-
gion feature extraction with global context modeling through a cross-attention
fusion mechanism. This approach enhances fine-grained feature extraction and
improves classification performance, demonstrating its effectiveness in handling
the pediatric dental development staging.

4.3 Ablation Studies

Analysis of RICA. To analyze the RICA block, we conduct ablation experi-
ments in Table [3] When RICA is solely used, there occur performance enhance-
ments of 1.2%. Additionally, we explore the impact of feature region selection
and fusion methods on performance based on our model. We compare the per-
formance of models using ROI-based features with those utilizing features from
the entire image (EI). As shown in Table 4} ROI features play a more important
role, because ROI features enable the model to focus on key details for accu-
rate tooth development assessment while avoiding distractions from irrelevant
background. We also investigate different feature fusion methods, including Con-
catenation Fusion (CF), Cross-Attention Fusion (CA), and Summation Fusion
(SF) in Table 4] The results indicate that the CA method outperforms the oth-
ers in enhancing classification accuracy. The CA method focuses on the most
relevant features through the attention mechanism.

Analysis of MECC. As shown in Table [3] incorporating the MECC block
brings a 1.3% improvement in Acc. When both the MECC and RICA block are
combined together, it produces the best Acc of 76.3%, surpassing the baseline by
3.4%. To validate the effectiveness of expert collaboration in the MECC block,
we designed three experimental setups: single expert block, independent experts
block (seven experts), and MECC block. The block structures are shown in Fig.
Bl It can be seen from Table [5] that MECC improves classification accuracy
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Fig. 3. Ablation study of contribution of collaboration in the MECC block.

Table 3. Ablation results of the proposed blocks, RICA and MECC.

Method Acc(%)  Precision(%)  Recall(%)  Fl-score(%)
DETR+ViT (baseline) 72.9 74.9 72.9 71.8
+RICA 74.1 76.7 74.1 73.2
+MECC 74.2 76.4 74.2 73.4
+RICA+MECC 76.3 78.0 76.3 77.1

Table 4. Analysis of different region selection and feature fusion method in RICA on
DentalDS. EI, SF, CF, and CA denote the entire image, summation fusion, concate-
nation fusion, and cross-attention, respectively.

Region Selection Feature Fusion Method
EI ROI SF  CF CA

Acc(%) Precision(%) Recall(%) F1-score(%)

4 - 4 - - 73.4 75.6 73.4 72.6
v - - v - 74.1 76.7 74.1 73.2
v - - - v 74.3 76.1 74.3 73.2
- v 4 - - 74.5 76.7 74.5 73.7
- v - v - 75.1 7.7 75.1 74.6
- v - - v 76.3 78.0 76.3 77.1

by leveraging the strengths of both the main expert and auxiliary experts. It
dynamically adjusts expert collaboration based on task complexity and achieves
the best performance.

Table 5. Comparison of model performance across different expert blocks.

Block Acc(%)  Precision(%) Recall(%) Fl-score(%)
Single expert block 72.9 74.9 72.9 71.8
Independent experts block 74.1 76.7 74.1 73.2

MECC block 76.3 78.0 76.3 77.1
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5 Conclution

In this paper, we first collected and annotated an OPG dataset called Den-
talDS, which is the first publicly available dataset for dental development stag-
ing, specifically designed for pediatric dental development assessment. Further,
we proposed DDSNet, which leverages two key components: RICA block and
MECC block. The combination of these advanced blocks provides DDSNet with
a significant ability in handling the challenges of pediatric dental development
staging. Through extensive experiments, we demonstrated that DDSNet outper-
forms other SOTA models, achieving superior performance in classifying dental
development stages.
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