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Abstract. Multi-modal Magnetic Resonance Imaging (MRI) plays a
crucial role in clinical diagnosis by providing complementary anatomy
and pathology information. However, incomplete acquisitions remain com-
mon due to practical constraints such as cost, scan time and image
corruption. Recently, the diffusion model has shown significant poten-
tial in the medical image-to-image translation task. However, most ex-
isting diffusion-based synthesis models are constrained to fixed input-
output modality pairs, lacking the flexibility to handle arbitrary missing
scenarios. Furthermore, these approaches inevitably sacrifice anatomi-
cal structures consistency and degrade critical texture details during
generation, potentially leading to the misdiagnosis of subtle patholog-
ical patterns. To address these issues, we propose MISA-LDM, the
first many-to-many MRI synthesis framework with modality-invariant
structure awareness based on the latent diffusion model. Our approach
enables the synthesis of missing modalities within a single model by
utilizing any available combinations of modalities. Meanwhile, we in-
troduce a Structure-Preserving Module (SPM) that employs a disen-
tanglement strategy to obtain modality-invariance structural represen-
tation and use high-frequency information as a supplement. We use the
anatomical priors obtained by SPM to guide the diffusion process, pre-
serving anatomical structures integrity. Extensive experiments conducted
on the BraTS2020 and BraTS2021 datasets demonstrate the superi-
ority of our method. The result confirms the necessity of introducing
more comprehensive anatomical priors for preserving generation consis-
tency in multi-modal MRI translation. The source code is available at
https://github.com /yichen-byte/misa-1dm.
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Fig. 1. Comparison between the previous synthesis methods and our proposed method.

1 Introduction

Magnetic Resonance Imaging (MRI) is a non-invasive imaging technique widely
used in diagnosing and treating brain diseases. Multi-modal MRI scans, in-
cluding T1-weighted (T1w), T2-weighted (T2w), contrast-enhanced T1-weighted
(T1CE) and fluid Attenuated Inversion Recovery (FLAIR) images, provide com-
plementary views of anatomical structures, each highlighting distinct soft tissue
characteristics. These diverse perspectives are crucial for effective multimodal
medical image segmentation and detection [I62002TIT3I26/12]. However, due to
limitations in scanning time and cost, obtaining a complete set of multi-modal
images can be challenging in clinical settings. To address this issue, there has
been growing interest in multi-modal generative models, which leverage avail-
able data from accessible modalities to synthesize the missing modalities. Early
studies for multi-modal MRI translation predominantly relied on Generative Ad-
versarial Networks (GANs). GAN-based models [I8JI95T] are designed to learn
a generator-discriminator framework that directly maps available modalities to
the missing ones. Despite their success, these methods suffer from several limi-
tations: premature convergence, mode collapse [3], and the inability to generate
high-quality, structurally consistent images.

Recently, diffusion models, with the advantages of a stable training process
and superior generation quality [6], have gradually replaced GANs as the main-
stream approach for generative tasks. The flexibility and stable training of the
diffusion model make it more suitable for medical image synthesis [9J4I23]. For
instance, Ozbey et al. [I5] first proposed an adversarial diffusion model for unsu-
pervised medical image translation. Xing et al. [24] proposed a cross-conditioned
diffusion model that conditions the generation process on the distribution of
target modalities. However, as shown in Fig. (1} existing diffusion generative ap-
proaches inevitably lead to the degradation of fine-grained detail and anatomical
structures [8], negatively impacting the accuracy of disease diagnoses. This is-
sue arises from the iterative process of noise addition and denoising in diffusion
models, particularly during the early or late stages of denoising. The issue is
further exacerbated when dealing with multi-modal data, as the correlations
among different modalities are more intricate to model. Until now, research on
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many-to-many MRI translation based on the diffusion model has still not been
explored.

To tackle the challenges associated with multi-modal MRI synthesis, we intro-
duce MISA-LDM, a novel Modality-Invariant Structure-Aware MRI synthesis
model based on the Latent Diffusion Model (LDM) [17], as shown in Fig.
Unlike traditional models [I025JI8], MISA-LDM is a many-to-many synthesis
model specifically designed to handle arbitrary input-output modality combina-
tions, providing flexibility in scenarios where certain modalities may be missing.
To alleviate the structure loss during the MRI synthesis, MISA-LDM incorpo-
rates a dedicated Structure-Preserving Module (SPM) that enhances the preser-
vation of anatomical structures for improving the synthesis ability of high-quality
MRI. Specifically, SPM utilizes a disentanglement strategy to extract modality-
invariant structural representations, which serve as anatomical priors, guiding
the generation process and ensuring that core structural features are maintained.
While SPM ensures the integrity of high-level anatomical structures, it may not
fully capture the fine-grained texture details necessary for accurate image syn-
thesis. To solve it, we propose a High-Frequency Compensation Module (HFCM)
for serving as a powerful complement to SPM by incorporating high-frequency
information into the diffusion process, which enhances the sharpness of edges and
textural patterns. This combination ensures that the model not only preserves
overall anatomical consistency but also generates images with fine-grained, real-
istic textures. Our main contributions can be summarized as follows:

1. Structural and anatomical consistency preserving. A Structure-Prese-
rving scheme is proposed to ensure the preservation of critical anatomi-
cal structures by extracting modality-invariant structural representations
to serve as anatomical priors. To complement this, we propose a High-
Frequency Compensation Module, which enhances the fine-grained details
of generated images by incorporating high-frequency information into the
diffusion process.

2. Flexible diffusion-based multi-modal MRI translation. MISA-LDM
enables many-to-many synthesis using a diffusion model to flexibly handle
arbitrary combinations of input and output modalities, which is especially
advantageous in clinical scenarios.

3. We conducted experiments on two public multi-modal MRI datasets, includ-
ing the BraTS2020 dataset and BraTS2021 dataset. The results show that
our method can not only synthesis high-quality medical images but also
better preserve texture details and anatomical structures.

2 Method

2.1 Overview of MISA-LDM

As shown in Fig. 2 MISA-LDM consists of two core components: (a) a multi-
modal latent diffusion model designed for arbitrary modality combination trans-
lation, and (b) a Structure-Preserving Module (SPM) for preserving structural
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Fig. 2. The overview of our proposed MISA-LDM for multi-model MRI synthesis.

consistency. Building on LDM [I7], MISA-LDM extends this paradigm to multi-
modal MRI synthesis. We first train a general variational autoencoder (VAE)
which consists of an encoder € and a decoder D to establish a unified latent space
across modalities. The diffusion process is then conducted in this latent space
to reduce computational complexity. Fig. [2| (a) illustrates the training process
of multi-modal latent diffusion model. To be specific, each modality is individ-
ually encoded into its corresponding latent representation through e, and they
are then concatenated into a unified representation zg, which can produce its
noisy version z; at time step t. To enable our model to handle arbitrary missing
scenarios, we randomly mask an arbitrary number of modalities (at least one
modality remains available) as a conditional variable z.. Our model receives z;
and z. as inputs to predict the originally injected Gaussian noise € at time step
t. Furthermore, to explicitly guide the generation of missing target modalities,
inspired by [I7I9], we incorporate a binary indicator vector (I.) into the diffusion
model via a cross-attention mechanism. The loss function is defined as follows:

Liam = ]EE(I),eNN(O,l),t [||€ — €9 (Zt y Zcs Ica Psvt)Hg] (]‘)

where €y(o,t) represents our neural backbone which is implemented as a time-
conditional UNet. P denotes the anatomical priors described in Section 2.2.

2.2 Structure-Preserving Module

Disentanglement for coarse modality-invariant structural representa-
tion As shown in Fig. 2 (b), to preserve anatomical consistency in the syn-
thesized images, we propose a disentanglement strategy to extract modality-
invariant structural representation from the available modalities for guiding the
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generation process. Specifically, we propose a dual-encoder framework consist-
ing of modality-specific style encoders and a shared structure encoder. For each
modality 4, a dedicated style encoder E! is developed to extract its unique stylis-
tic vector s;, while the shared structure encoder E. captures modality-invariant,
high-level structural representation C,. To effectively leverage useful informa-
tion, we propose a Feature Fusion with Missing Modalities (FFMM) module
that dynamically adjusts feature weighting through a sigmoid gating mecha-
nism, as illustrated in Fig. [2| (d). All structure features (with missing values
zero-imputed) are integrated through FEMM into a coarse structural representa-
tion P; = Conv (Zf\il ;- Ci>, preserving essential semantic information across
modalities, where «; denotes the feature weighting and M denotes the total
number of modalities. To encourage successful disentanglement, we employ two
distinct decoder architectures: (1) a set of modality-specific decoders D% to recon-
struct the available modalities from P, and s;, and (2) a segmentation decoder
D, that predicts brain tumor masks directly from P's. The reconstruction loss
L ec is a pixel-wise Ly loss measuring the difference between available modalities

M
M denotes the available number of modalities. Meanwhile, a segmentation loss
with Dice is applied to guide the anatomical structures extraction. The overall
loss of our proposed method is formulated as: Liotal = Lidm + A1 Lrec + A2Lseg-

. . . M ; ’
and their reconstructed images, i.e. Liec = L i—1 HD} (PS7 sl> — x;|| , where
= 1

Supplementing with high-frequency information While the coarse modality-
invariant structural representation preserves anatomical coherence in synthesized
modalities, its emphasis on high-level semantics may lead to compromised fine-
grained, low-level details. To address this limitation, we design a High-Frequency
Compensation Module (HFCM) that explicitly preserves and enhances edge pat-
terns, as depicted in Fig.[2|(c). Specifically, we employ the Laplacian operator [22]
to extract edge information from the available modalities, and then retain the
most informative high-frequency features through a max-pooling operation. Sub-
sequently, a self-attention mechanism is constructed to focus on critical regions
(e.g., lesion boundaries), establishing dynamic weight allocation for detail fea-
tures. The coarse structural representation P; is incorporated with the optimized
high-frequency representation P, via residual compensation (Eq.(2)), producing
enhanced anatomical priors Py, i.e. P, = Conv(P, + P},) + P,. Finally, multi-
scale priors information is injected into the diffusion model’s denoising process
via a learnable conditional embedding layer, achieving better anatomical plau-
sibility and detail fidelity simultaneously.

P;, = Attn(Conv(Max(eq, ...,enr))) (2)

where e; represents the edge map extracted from the i-th available modality,
with missing values filled by zero.
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Table 1. Quantitative comparison on the BraTS2020 and BraTS2021 datasets. M.
denotes the number of available modalities. Blue indicates the best result.

‘M.| Methods

=
=

T1
PSNRT SSIMT

T2
PSNRT SSIMT

T1CE
PSNR?T SSIMT

FLAIR
PSNR?T SSIMT

MMGAN
ReMIC
MMT
Ours

—

25.379/25.032 0.920,/0.919
25.761,/25.337 0.921/0.917
27.587,/26.820 0.939,/0.929
27.978/27.532 0.94:

@
2

25.468,/25.571 0.918/0.913
26.017/25.135 0.920,/0.915
27.214/26.987 0.928,/0.922
28.087/27.794 0.932/0.927

28.128/27.351 0.930,/0.921
28.387/27.187 0.931/0.926
29.048,/29.128 0.940,0.935
29.917/29.430 0.946/0.937

25.096,/24.172 0.908/0.895
25.314/24.438 0.910/0.907
27.008,/25.731 0.925/0.913
27.187/25.963 0.929/0.915

MMGAN
ReMIC
MMT
Ours

26.034/26.035 0.932/0.923
26.181/26.417 0.930,/0.921
28.186,/27.781 0.944,/0.938
28.824/28.156 0.949,/0.939

26.203/26.438 0.925/0.916
26.882/26.567 0.926,/0.919
28.354,/28.104 0.937/0.925
29.713/28.278 0.941/0.931

29.318/28.157 0.938/0.928
29.575/28.651 0.940/0.931
30.107/29.889 0.948/0.941
31.682/30.478 0.955/0.943

26.327/25.051 0.913/0.908
26.158/25.607 0.914/0.913
28.119/26.439 0.933/0.920
28.678,/27.036 0.936,/0.922

MMGAN
ReMIC
MMT
Ours

w

27.827,/27.034 0.935/0.926
27.586,/27.354 0.933/0.925
29.063/28.481 0.947/0.941
29.966/29.608 0.954/0.947

28.324/27.147 0.931,/0.920
28.076,/27.735 0.930,/0.922
29.568/29.078 0.942/0.931
30.882/29.890 0.951,/0.939

30.162/30.149 0.941/0.935
30.245/30.510 0.943/0.938
31.621/31.132 0.956,/0.948
33.173/31.889 0.963/0.956

27.287/26.152 0.917/0.912
27.373/26.515 0.921/0.915
28.806,/27.358 0.936/0.926
29.691/27.987 0.941/0.929

3 Experiments and Results

3.1 Datasets and Implementation

The BraTS2020[1412] dataset includes a total of 369 multi-modal 3D brain MRI
volumes. The BraTS2021 [I] dataset contains 1251 multi-modal 3D brain MRI
volumes. For both datasets, each case consists of four structural MRI scans T1,
T2, T1CE, and FLAIR images. During preprocessing, we slice the 3D volumes
into a collection of 2D images along the z-axis (including segmentation labels),
and resize each image to 256 x 256. We implement our model using PyTorch
2.1.0 framework with 3x NVIDIA A30 GPUs. In training phase, we train 100
epochs across all datasets with batch size of 12. The model is optimized using
the Adam optimizer with a learning rate = le-4, decay rate = le-5, §; = 0.9,
and B2 = 0.999. All datasets were evaluated using 5-fold cross-validation.

3.2 Comparison with State-of-the-Art Methods

Quantitative Analysis. In this section, we compare the proposed MISA-
LDM with several multi-modal MRI synthesis methods including MMGAN [1§],
ReMIC [19] and MMT [II]. Table [1| shows the results of comparative synthesis
methods on the BraTS2020 and BraTS2021 datasets. Our method achieves the
highest average Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity In-
dex (SSIM) scores on both datasets. These results quantitatively validate the ef-
fectiveness of our approach. Notably, the observed gradual improvement in image
synthesis quality with increasing numbers of available modalities demonstrates
our model’s capacity to effectively harness complementary information across
different modalities. To further demonstrate that our method ensures structural
consistency, we evaluate the preservation of anatomical structures in the syn-
thesized images with a trained segmentation model. Specifically, we trained a
multi-modal segmentation model that takes T1, T2, TICE and FLAIR images
as inputs on the training set and produces tumor masks on the test set. The
result is shown in the first row of Table [2| Then, we consider the scenario where
a single modality is missing and synthesize the missing modality via different
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Fig. 3. Visual comparisons of proposed MISA-LDM and advanced methods.

Table 2. Tumor segment evaluation on the BraTS2020 dataset.

T1 T2 T1CE FLAIR

Methods

WT TC ET

wT TC ET

WT TC ET

wWT TC ET

Complete
MMGAN
ReMIC
MMT
Ours

0.939 0.915 0.889
0.854 0.832 0.812
0.839 0.816 0.797
0.901 0.871 0.846
0.915 0.895 0.873

0.939 0.915 0.889
0.827 0.802 0.781
0.851 0.842 0.827
0.908 0.894 0.863
0.913 0.892 0.873

0.939 0.915 0.889
0.734 0.721 0.704
0.742 0.723 0.710
0.824 0.808 0.783
0.846 0.823 0.809

0.939 0.915 0.889
0.809 0.788 0.771
0.821 0.806 0.779
0.886 0.862 0.834
0.883 0.856 0.838

methods. We feed the imputed multi-modality image sequences of test set into
the same trained segmentation model and produce the tumor masks. We eval-
uate the segmentation results in terms of Dice score of the whole tumor (WT),
tumor core (TC), and enhancing tumor (ET). As shown in Table |2 our MISA-
LDM outperforms the other methods in terms of Dice score, indicating that it
exhibits excellent ability in preserving anatomical structures during the synthe-
sis process. Our results also suggest that preserving the structural consistency
during the image synthesis is crucial for improving image quality.

Qualitative Analysis. Qualitative results are presented in Figure. [3| which
compares synthetic MRI images generated by our MISA-LDM and various com-
parison methods on the BraTS2020 datasets. We generate each missing modality
using the other three available modalities through different synthesis models and
obtain the corresponding visual results. As shown in the highlighted region-of-
interest (ROI) in the zoomed-in red box, our method produces more accurate
brain tumor regions and more realistic tissue textures compared to other ap-
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Fig. 4. Visual examples of generative images produced by MISA-LDM. The four-bit
digits represent the availability of T1, T2, T1CE and FLAIR modalities, where "0"
and "1" denote the "missing" and "available", respectively.

Table 3. Ablation study on BraTS2020 dataset.

T1 TICE
PSNR1 SSIM? DICEt|PSNR? SSIM{ DICET
Baseline 28.661 0.946 0.894 |31.871 0.953 0.812
Baseline+SR | 29.128 0.953 0.913 |32.564 0.959 0.839
Baseline + HFCM| 28.255 0.945 0.896 |32.024 0.954 0.816
Baseline+SPM | 29.966 0.954 0.915 | 33.173 0.963 0.846

Methods

proaches. These visual observations validate that MISA-LDM not only excels in
robust cross-modality synthesis across diverse clinical scenarios but also outper-
forms others in preserving structural consistency. Fig. [d] illustrates MRI images
synthesized by MISA-LDM under different conditions of available modalities. It
can be observed that more available modalities during synthesis leads to higher-
quality target modality images. The results also demonstrate that MISA-LDM
efficiently exploit the complementary information in the multi-modal images.

Ablation Study. In this section, we conducted an ablation study on the
BraTS2020 dataset to rigorously evaluate the individual contributions of our
key technical components. Following a progressive ablation protocol, we system-
atically investigated three critical elements: 1) the Structure-Preserving Mod-
ule (SPM), 2) the High-Frequency Compensation Module (HFCM), and 3) the
corse modality-invariance Structural Representation (SR) obtained by disentan-
glement strategy within SPM. We mask one target modality at a time while
utilizing the remaining three available modalities for imputation. Quantitative
results are summarized in Table [3} We use PSNR and SSIM to evaluate image
fidelity and perceptual quality, while the Dice score of the whole tumor (WT)
reflects structural consistency with the ground truth. The results show that
each module contributes to performance improvements, with the complete SPM
achieving the best overall results, indicating its effectiveness in enhancing both
synthesis quality and preserving anatomical structures.
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4 Conclusion

In this work, we present MISA-LDM, a novel latent diffusion framework for flex-
ible multi-modal MRI synthesis that can handle arbitrary combinations of miss-
ing modalities. By integrating a Structure-Preserving Module with modality-
invariant structural feature disentanglement and adaptive high-frequency com-
pensation, our method successfully preserves both global anatomical structures
and fine-grained pathological details during cross-modal generation. Compre-
hensive experiments on BraTS2020 and BraTS2021 datasets demonstrate the
superiority of our proposed MISA-LDM. Moreover, the ablation studies are con-
ducted to verify the effectiveness of each module.
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