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Abstract. Recent advances in histopathology vision-language founda-
tion models (VLFMs) have shown promise in addressing data scarcity
for whole slide image (WSI) classification via zero-shot adaptation. How-
ever, these methods remain outperformed by conventional multiple in-
stance learning (MIL) approaches trained on large datasets, motivating
recent efforts to enhance VLFM-based WSI classification through few-
shot learning paradigms. While existing few-shot methods improve diag-
nostic accuracy with limited annotations, their reliance on conventional
classifier designs introduces critical vulnerabilities to data scarcity. To
address this problem, we propose a Meta-Optimized Classifier (MOC)
comprising two core components: (1) a meta-learner that automatically
optimizes a classifier configuration from a mixture of candidate classifiers
and (2) a classifier bank housing diverse candidate classifiers to enable a
holistic pathological interpretation. Extensive experiments demonstrate
that MOC outperforms prior arts in multiple few-shot benchmarks. No-
tably, on the TCGA-NSCLC benchmark, MOC improves AUC by 10.4%
over the state-of-the-art few-shot VLFM-based methods, with gains up
to 26.25% under 1-shot conditions, offering a critical advancement for
clinical deployments where diagnostic training data is severely limited.
Code is available at https://github.com/xmed-1lab/MOC.
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1 Introduction

Recent advances in pathology vision-language foundation models (VLFMs), such
as PLIP [4], BiomedCLIP [19], and CONCH [10], have demonstrated remarkable
capabilities in histopathological image interpretation through visual-language
alignment. These models mitigate data scarcity challenges stemming from anno-
tation costs, privacy constraints, and rare disease prevalence via zero-shot adap-
tation. However, existing VLFM-based zero-shot approaches exhibit inferior per-
formance compared to conventional multiple instance learning (MIL) frameworks
that leverage extensive annotated whole slide image (WSI) datasets. This perfor-
mance discrepancy has motivated emerging research into few-shot VLFM-based
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Fig.1: Architectural comparison among (a) MIL-based methods, (b) prompt
tuning-based methods, and (c) our proposed meta learning-based method for
VLFM few-shot pathology analysis. Different from prompt-tuning-based frame-
works that adopt conventional classifiers, our method uses the meta learner
to dynamically compose an optimal meta classifier from the classifier bank.

WHSI classifications that enhance diagnostic reliability with minimal annotated
data.

Existing VLFM-based few-shot WSI classification methods (Fig. 1(b)), dis-
tinguish themselves from conventional MIL frameworks [5,12,15,6,18,20,9,17]
(Fig. 1(a)) by incorporating linguistic supervision alongside visual understand-
ing. Most VLFM-based few-shot WSI methods [13,7,14,3,2,1,8] address few-shot
classification by introducing various prompt-tuning techniques. For example,
TOP [13] leverages pathology prior knowledge in its prompting, FiVE [7] inte-
grates pathological reports into prompts, PEMP [14] enhances prompts with ad-
ditional image references, and FAST [2] employs supplementary visual prompts
through cached samples. However, these methods mainly focus on prompt engi-
neering at the input side while adopting the conventional classifier comprising
a learnable aggregator (e.g., attention pooling) to generate global representa-
tions and a visual-linguistic similarity matching for predictions. Our experi-
mental analysis reveals this design’s vulnerability for few-shot learning, with
TOP [13] exhibiting a 25% AUC drop (0.79—0.54) by decreasing the training
samples from 16 to 2 (see Tab. 1). Such performance degradation is primarily
due to the overfitting of parameter-intensive aggregators under data scarcity.

In light of this, we consider using non-parametric operations as an alterna-
tive to the attention-based aggregator. Notably, our baseline uses non-parametric
top-K similarity matching to achieve promising performance, surpassing state-
of-the-art prompt-tuning methods (CoOp [21] and TOP [13]) by at least 4.9%
in AUC across various few-shot settings (see Tab. 1). This finding highlights the
critical role of classifier design, i.e., cosine similarity, in few-shot scenarios. How-
ever, relying solely on top-K similarity matching, which prioritizes patches with
maximal disease descriptor alignment, may yield suboptimal outcomes. There-
fore, we further propose a meta-learning-based method that jointly leverages
multiple classifiers with complementary diagnostic emphases, enabling a more
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effective identification of the most representative patches from the slide for di-
agnosis.

In this work, we introduce a novel Meta-Optimized Classifier (MOC) for
few-shot whole slide image classification. MOC comprises two core components:
(1) a meta-learner that automatically optimizes a classifier configuration from
a mixture of candidate classifiers and (2) a classifier bank housing diverse can-
didate classifiers to enable a holistic pathological interpretation. Specifically,
the classifier bank is empirically implemented with four non-parametric oper-
ations, emphasizing three key aspects: maximal similarity, categorical promi-
nence, and minimal irrelevance. Extensive experiments demonstrate that MOC
consistently outperforms prior art across multiple few-shot benchmarks. Notably,
on the TCGA-NSCLC benchmark, MOC achieves a significant improvement of
10.4% in AUC over the state-of-the-art few-shot methods, with performance
gains amplifying to 26.25% under 1-shot conditions. This advancement is partic-
ularly critical for clinical deployments, where diagnostic training data is severely
limited.

2 Methodology

In this section, we introduce a novel few-shot WSI classification framework cen-
tered around our Meta-Optimized Classifier (MOC). As illustrated in Fig. 2, the
framework begins with WSI preprocessing, followed by the application of MOC,
which leverages a meta-learner to dynamically propose configurations and in-
tegrate candidate classifiers from the classifier bank. We will first elaborate on
how the MOC assists few-shot WSI classification, followed by our construction
recipe for the classifier bank.

The problem definition of our few-shot WSI classification task is briefly pre-
sented as follows: given a dataset D = {X;, Xo, ..., Xx } comprising N WSIs with
C distinct categories, each WSI Xj; is given a label Y; € {1,2,...,C}. Each WSI
X; is then partitioned into n; non-overlapping patches {z;;,j = 1,2,...,n;},
where the label for each patch z; ; is unknown. "Shot" refers to the number of
labeled WSIs for each category, i.e., the training set for C'-Category K-Shot WSI
classification contains K x C labeled WSIs. Typically, K can take values such
as 1, 2, 4, or 8.

2.1 Meta-Optimized Classifier for Few-Shot WSI Classification

The core function of the MOC is to construct an optimal classifier for each input
instance. This is accomplished by the collaboration of the meta-learner and the
classifier bank. Candidates in the classifier banks provide pathological analysis
from different aspects, while the meta-learner coordinates such observations for
an optimal classifier scheme.

To be specific, we firstly preprocess the WSIs. We utilize the pathology vision-
language foundation model as the backbone of the proposed framework, which
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Fig.2: The two-phase few-shot WSI classification pipeline: 1) Preprocess WSI
and prompts. 2) WSI prediction with the proposed Meta-Optimized Classifier.
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consists of pre-trained visual encoder F(-) and text encoder G(-). For each cat-
egory c¢, the prompt ¢, = template + classname., where the template in the
form of ‘A pathology image of {3}’ and the classname. takes this full name
of the category, i.e., ‘lung adenocarcinoma’. Then, the corresponding prompt
embeddings can be computed via w, = ”583”, and the ly-normalized WSI em-

beddings for patch z;; is given by w;; = % Therefore, we obtain the
2,7

prompt embeddings set W = {w,}c=1,.. ¢ for all categories.

Defined the classifier bank as a collection of H candidate classifiers: ¥ =
{1, 2, ..., }. Here, each candidate classifier v, is capable of mapping patch
embedding u; ; and the prompt embeddings set W to a patch score th] =
Y (us 5, W). We demonstrate an effective detailed implementation for the clas-
sifier bank in Sec. 2.2. The patch scores are subsequently utilized for patch
filtering. Specifically, each candidate classifier v}, elects a subset of patches for
WSI X;, denoted as Bagg’(’z, which includes the top ¢ patches with the highest
scores:

Bag}b(’: ={a;; | xi; € arg(gr)za:r S;Z’if‘_j}, Yo, € W. (1)

Subsequently, a bank-nominated set Bagg’(i for the WSI X is obtained by tak-

ing a union of these sets: Bagg’(i = U Bag;p(’f. This filtering process removes
' P EY ’
patches with limited significance by a consensus among all candidate classifiers.

Further, the meta-learner M, structured as a two-layer perceptron, predicts
the classifier weights for the H candidate classifiers based on a patch embedding
u; ;. Specifically, given a nominated patch z; ; € Bag%i for WSI X;, we obtain
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a set of H classifier weights A; j = {\}, , " A2 e A, J} by:
Ay = M(uiz). (2)

And the set of nominated patch prediction px, = {pz, ;}s, ,eBagz is calculated

via:
p17‘,,7 Z )‘17 i ac, g (3)

Finally, we use a top-K max-pooling operation, htopK’ to get the WSI-level
prediction Py, for WSI X;:

K
P htOpK pX sz7zpz7“'72ﬁ? 5 (4)
i=1

where p§ is the i-th largest score values from patch-level prediction set px,
for category c. The parameter of the meta-learner is optimized with the cross-
entropy loss between the WSI-level prediction and ground truth.

2.2 Classifier Bank Construction with diverse Classifiers

Candidate classifiers in the classifier bank aim to provide complementary di-
agnostic emphases, allowing the meta-learner to comprehensively recognize the
significance of each patch. In this section, we demonstrate an effective way to
construct the classifier bank with four candidate classifiers, denoted as ¥ =
{¥p,Yo,%A,¥s}. Each candidate classifier is illustrated as follows:

e Confidence Peak Classifier 1, evaluates maximal similarity by comput-
ing the cosine similarity between the patch embedding and each prompt
embedding, formulated as

Syr = ul;W. (5)

e Normalized Certainty Classifier ¢, identifies easy distinguishability by

applying a softmax function o to the cosine similarity between patch em-
beddings and prompt embeddings. This is defined as:

Sy, = oui;W). (6)

e Divergence Extremum Classifier )4 also evaluates easy discrimination
by computing the similarity difference of the highest two categories, formu-
lated as:

S¥a = max(l)(ug:jW) — mazx () (ulTJW) (7)

ZTi,j
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e Background Suppression Classifier 13 measures the minimal irrelevance
by calculating the negative similarity between a patch and the background
tissues. Specifically, we additionally introduce four normal tissue types, i.e.,
‘stromal tissue’, ‘inflammatory tissue’, ‘vascular tissue’, and
‘necrotic tissue’. Following the same process routine as foreground cat-
egories, we obtain the background prompts {t? }e=1,...cs and background
prompt embedding W# = {wf}c:17.._,cﬁ, where C? denotes the number of
background tissue types. Then, the patch score is given by:

lold
P
Sel, = — Z uzjjwf. (8)
c=1

3 Experiments

Dataset. We comprehensively compare our proposed MOC with many state-
of-the-art (SoTA) methods using two real-world datasets: TCGA-NSCLC and
TCGA-RCC. TCGA-NSCLC consists of 1052 WSI slides for lung cancer sub-
typing, and TCGA-RCC consists of 937 WSI slides for kidney cancer subtyping.
Each dataset is randomly split five times into the training, validation, and test
sets. For TCGA-NSCLC, each fold consists of 50 validation samples and 200
test samples, whereas for TCGA-RCC, each fold contains 20 validation samples
and 70 test samples. To simulate the few-shot learning scenario, we then ran-
domly select k samples per category from the training set to construct the k-shot
experimental setup.

Implementation and evaluation We employ the CONCH [10] pretraining
as the backbone for both the image and text encoders. We use the CLAM [12]
toolkit for WSI preprocessing, and we set the patch size to 224 for feature extrac-
tion. We use the same prompt ensemble scheme following MI-Zero [11]. MOC
w/o. (M, ¥) in Tab. 1 and Tab. 2 is implemented following MI-Zero [11]. For a

Table 1: Few-shot results on TCGA-NSCLC dataset. The best results are in
bold, and the second-best results are underlined.

1 shot ‘ 2 shot ‘ 4 shot ‘ 8 shot
| AUC (%) Acc. (%) | AUC (%) Acc. (%) | AUC (%) Acc. (%) | AUC (%) Acc. (%)

MIL-based Methods

Method

CLAM-SB [12] 52.3916.014 48.3811.43 | 58.0345.7¢ 48.2311.36 | 69.2214.74 51.9545.15 | 73.6846.72 59.9649 .44
CLAM-MB [12] 58.75+9.81 50.57+2.78 | 65.40+4.41 61.87+268 | 71.9214.14 52.4313.15 | 79.69+6.34 66.63+2.48
TransMIL [15] 62.2414.59 55.2415.15 | 63.9544.05 55.8715.17 | 74.5145.66 61.4217.95 | 83.6917.05 75.8217.44
ViLa-MIL [16] T1.79+4.64 56.48+6.79 | 72.9343.35 60.34+3.60 | 77.79+4.88 57.86+7.66 | 84.20+7.09 73.51+9.22
Few-shot VLFM-based Methods
CoOp [21] 62.041824 59.1547.84 | 70.214278 63.9712.47 | 72.23+4.18 58.65+3.42 | 80.114501 69.48+5.03
TOP [13] 54.7616.95 51.2314.09 | 65.794287 57484333 | 72.67Tr9.00 65904751 | 79.43 4830 71.024752
MOC w/o. (M,¥)] 85004165 75.31:1.08]85.001063 75.3111.03] 85.00£165 75.3111.03 85.00£165 75.3Li10s
Our MOC 88.291265 73.954373 89.1111.13 74.2615.21 (90.65+1.02 68.57+3.80 (90.51+1.74 77.10+3 80

t Report the average zero-shot results on all test sets.
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Table 2: Few-shot results on TCGA-RCC dataset. The best results are in bold,
and the second-best results are underlined.

Method ‘ 1 shot ‘ 2 shot ‘ 4 shot ‘ 8 shot

[ AUC (%) Acc. (%) [AUC (%) Acc. (%) | AUC (%) Acc. (%) | AUC (%) Acc. (%)
MIL-based Methods
CLAM-SB [12] 74.05410.56 46.0346.07 |77.97112.92 48.6847.12|90.7741.24 66.9814.62 | 95.2011.09 83.8912.78
CLAM-MB [12] 75.81+13.37 56.49+14.22|77.97+14.35 44.0945.01 | 91.3412.45 76.68+5.16 | 95.53+1.30 82.35+3.30
TransMIL [15] 81.49+10.36 46.25+7.82 | 84.17+9.52 63.05+14.31] 93.50+1.88 80.21+3.73 | 96.07+1.50 80.77+s.06
ViLa-MIL [16] 82.55+12.31 59.33+12.75(82.92410.43 63.831+11.95 93.1512.64 79.0245.97 | 95.611236 84.07+5.37
Few-shot VLFM-based Methods

CoOp [21] 87.4042.51 54.3343.39 [82.59+15.14 50.651+9.37 | 92921185 58.2843.39 | 94.9841.77 58.81+3.61
TOP [13] 67.60+3.45 34.70+4.46 | 75.73+3.06 43.85+10.04| 72.39+3.64 47.64+8.44 | 72.0244.40 51.44410.23
tMOC w/o. (M, ¥)|96.0310.68 80.39+2.33 | 96.03+0.68 80.39+2.33 | 96.03+0.68 80.39+2.33 | 96.0310.68 80.39+2.33
Our MOC 96.25+1.41 84.3415.24(97.4510.72 90.0212.5597.4210.41 89.39+2.75(97.78.10.40 91.74 11 .44

t Report the average zero-shot results on all test sets.

fair comparison, we apply the same splits, backbone, preprocessing, and prompts
to all the methods. The learning rate is set to le ™3, ¢ in Eq. 1 is set to 1000, and
K in Eq. 4 is set to 150. Hyperparameters for baseline methods are following
the original implementation. We respectively report the average Area Under the
Curve (AUC) and Accuracy (ACC) with corresponding standard deviation (=+).

Remarkable improvements in few-shot WSI classification. We compare
the performance of our proposed MOC with many SoTA MIL-based methods
and few-shot VLFM-based methods on the TCGA-NSCLC dataset as Tab. 1
and the TCGA-RCC dataset as Tab. 2. The results suggest our method achieves
the best on both datasets among different few-shot settings. Specifically, on the
TCGA-NSCLC dataset, our MOC surpasses the second-best performing few-
shot WSI classification method by 26.25%, 18.9%, 17.98%, 10.4% in AUC for 1,
2, 4, 8-shot settings and also outperforms zero-shot baseline by at least 3.29%.

Ablation study As shown in Tab. 3(left), our proposed MOC achieves the
highest performance (89.64%) compared to the other three methods, demon-
strating incremental performance gains through the successive integration g,
¥, and 9, into baseline 1,. Tab. 3(right) reveals that the method incorporat-
ing four classifiers achieves the highest performance among all configurations,
highlighting a consistent performance improvement as the number of classifiers
increases.

The comparative analysis in Tab 4 provides critical insights into classifier
integration strategies. Given multiple classifiers, a naive summation yields only
marginal improvements (merely 0.4% increase over baseline), while our meta-
learner-based integration achieves a remarkable 4.64% AUC enhancement, effec-
tively leveraging complementary classifiers for a more holistic understanding.

Qualitative visualization We further depict the visualizations in Fig. 3. We
compare our method with CoOp [21], TOP [13], and MI-Zero [11]. We find our
MOC obviously shows better results than other baselines.
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Table 3: Comparison of methods with (left) varying classifier combinations and
(right) increasing number of classifiers (considering all possible classifier combi-

nations).

Method Yp | Yo [Ya | s |avg AUC(%) #Classifiers | avg AUC(%)
MOC w/o. (M, )|V | X | X | X | 85.00 1 85.00
Method x VI iX| X |V 87.63 2 86.59
Method y V| X | v |V 88.95 3 88.82
MOC Vi iv v | Vv 89.64 4 89.64

Table 4: Performance comparison of our baseline, multiple classifiers fused with
summation, and our proposed MOC.

Method average AUC(%)
MOC w/o. (M, ¥) 85.00
Multiple Classifiers (w. Summation) 85.40
MOC (w. Meta-learner) 89.64

WSI (GT) CoOp TOP MI-Zero MOC (ours)

Fig. 3: Visualizations on the TCGA-NSCLC datasets. Ground-truth tumors are
circled in yellow, predicted tumor regions are red, and black boxes note false
positives.

4 Conclusion

In summary, this study presents a novel Meta-Optimized Classifier (MOC) for
few-shot WSI classification. To address the limitation of the classifier design in
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existing VLFM-based few-shot explorations, we innovatively use a meta-learner
to dynamically construct an optimal classifier from the classifier bank. Further-
more, we implement the classifier bank with diverse classifiers for a holistic patho-
logical understanding. Extensive experiments demonstrate our MOC’s state-of-
the-art performance among multiple few-shot benchmarks.
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