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Abstract. Echocardiography is a vital non-invasive modality for car-
diac assessment, with left ventricular ejection fraction (LVEF) serving
as a key indicator of heart function. Existing LVEF estimation methods
depend on large-scale annotated video datasets, which are costly and
limit adaptability across various clinical settings. Recent vision-language
models for echocardiography, such as EchoCLIP, apply image-to-text
pretraining but fail to capture crucial temporal dynamics and local-
ized cardiac structures essential for accurate diagnosis. To address these
challenges, we propose CardiacCLIP, a video-based framework that
enhances LVEF prediction through attention-based frame aggregation
and multi-resolution input scaling. Specifically, we introduce MFL (Multi
Frame Learning), a novel attention-based mechanism for selectively fus-
ing informative frames, and EchoZoom, a multi-scale feature extraction
strategy that refines spatial representations of cardiac structures. As a
novel adaptation of CLIP models for few-shot echocardiogram video anal-
ysis, our approach significantly improves diagnostic accuracy, reducing
MAE by 2.07 on the EchoNet-Dynamic dataset under 1-shot setting. The
code is available at https://github.com/xmed-1lab/CardiacCLIP.

Keywords: Vision Language Model - Echocardiogram - Ejection Frac-
tion.

1 Introduction

Left ventricular ejection fraction (LVEF) is a fundamental measure of cardiac
function, widely used for diagnosing and monitoring cardiac conditions such as
heart failure and cardiomyopathy [8,14,20]. Echocardiography, as a non-invasive
and cost-effective imaging modality, is the primary tool for assessing LVEF in
clinical practice [18,31,32]. However, estimating LVEF remains a challenging task
due to its dependence on expert interpretation, inter-operator variability, and
the complex temporal dynamics of cardiac motion [21,33]. Manual assessment is
time-consuming and prone to subjectivity, highlighting the need for automated
solutions that can improve efficiency and accuracy in LVEF estimation [7,19].
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Recent deep learning approaches have shown promise in automating LVEF
prediction by leveraging large-scale echocardiographic video datasets [6,19]. These
models typically rely on supervised learning paradigms that require massive la-
beled videos, making them highly dependent on extensive manual annotations
and creating significant bottlenecks for model scalability and adaptability across
different clinical settings. Furthermore, domain shifts due to variations in ac-
quisition protocols and ultrasound manufacturers often degrade model perfor-
mance when deployed in real-world clinical environments [2,7,30]. To address
these challenges, it is crucial to develop data-efficient adaptation strategies that
can generalize across diverse conditions with minimal labeled supervision [5,16].

Vision-language models (VLMs), particularly CLIP-based architectures, have
recently emerged as powerful tools in medical image analysis [3,4,9]. By aligning
visual and textual representations, CLIP enables models to learn rich seman-
tic features from large-scale image-text pairs without requiring extensive task-
specific annotations [23]. EchoCLIP [4] represents the first attempt to apply
CLIP to echocardiography, achieving promising results in image-text retrieval.
However, EchoCLIP [4] extracts a random frame from each video for image-text
matching pretraining, and averages predictions across frames without modeling
the temporal dynamics of the cardiac cycle. In addition, the diagnosis of various
cardiac diseases and important indicators heavily rely on the accurate percep-
tion of the temporal changes in specific regions of the heart [11,14]. However,
CLIP-based models are known to have limited fine-grained feature understand-
ing, making them less effective in identifying subtle cardiac abnormalities. Since
LVEF prediction is inherently a video-based task, existing CLIP models fail to
fully exploit the temporal and anatomical information embedded in echocardio-
graphic sequences.

To overcome these limitations, we propose CardiacCLIP, a novel video-
based CLIP adaptation designed for few-shot LVEF prediction from echocardio-
gram videos. Our method introduces two key components: MFL (Multi Frame
Learning), an attention-based frame aggregation module that selectively fuses
frame-level information for temporal modeling; and EchoZoom, a multi-resolution
input scaling strategy tailored for capturing fine-grained anatomical features
from the apical four-chamber views. MFL mitigates the redundancy of frame-
wise features by learning an optimal weighting mechanism, while EchoZoom en-
sures that the model attends to diagnostically relevant cardiac regions by fusing
multi-scale representations. These two components enhance model robustness
and generalization, allowing CardiacCLIP to achieve superior performance in
data-limited settings. Our contributions are summarized as follows:

1. We introduce CardiacCLIP, a novel CLIP-based framework specifically de-
signed for video-based echocardiography analysis, addressing the limitations
of image-based CLIP models.

2. We develop MFL, an attention-based frame fusion mechanism that effectively
captures temporal dependencies in LVEF estimation.

3. We propose EchoZoom, a multi-resolution scaling strategy that enhances the
model’s ability to capture fine-grained structural details.
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4. We demonstrate that CardiacCLIP significantly outperforms existing meth-
ods in few-shot settings, achieving state-of-the-art performance.

2 CardiacCLIP for LVEF Prediction

2.1 Preliminary: Coarse-to-Fine Ordinal Regression

LVEF estimation can be reformulated as an ordinal regression problem, where
we first convert it as a classification task by discretizing the labels as different
bins and treating each bin as an independent class, and then regress the specific
values based on the classification results [9,26]. The motivation for this is based
on the fact that learning from a staged classification process is more effective and
easier than directly learning from multiple precise values, especially in the im-
perfect data scenario [22]. This reformulation allows training with cross-entropy
loss while maintaining numerical continuity via an MAE-based regression refine-
ment [10,29]:

Lor = Lce + Lyae . (1)

For the coarse-to-fine framework, the coarse stage maps LVEF values into
discrete bins, leveraging CLIP’s pretrained visual-textual alignment. This trans-
forms the problem into a classification task, where text embeddings serve as
classifier weights. The fine stage refines predictions via a lightweight MLP re-
gressor, making the final estimation:

* b
= i _— s 2
V=D Pty (2)
i=1:k
where k is the number of classes, p; is the class probability, b; is the centre of
i¢r, mapped numerical group, and §; is the estimated shift from the regressor to
make the bin interval learnable. These two stages are trained end-to-end.

2.2 Video-based LVEF Prediction

Leveraging its robust representation capabilities from pretraining on extensive
image-text pairs, CLIP serves as a foundational model for various downstream
tasks, including video recognition [24]. Given an echocardiogram video z; €
RTXCXHXW with T frames and each frame is with the spatial dimension of
H x W, we process the video through the CLIP visual encoder f,(:) to extract
features:
2" = folzi) ®3)

where the visual feature z¥* € RTXC and C represents the feature dimension
of the [CLS] token. Unlike previous CLIP methods for video adaptation that
average frame-level features to obtain video representations [12,24], we introduce
MFL (Multi Frame Learning), attention-based feature aggregation to capture
critical cardiac dynamics.

For text features, we tokenize clinically relevant LVEF descriptions (e.g.,
“The left ventricular ejection fraction is estimated to be mildly reduced LVEF
(45-54%)”) and embed them via the CLIP text encoder f(-):

= it (4)
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where 2% € RY. To enrich text representations, we leverage GPT-4 [1] to
generate diverse descriptions corresponding to LVEF intervals, enhancing data
efficiency and serving as a form of text data augmentation during training. Given
the ground-truth category label y;, the model is trained via a cross-entropy loss:
1 N K
Lee=—-+ Zyu logyi,j (5)
J

i

where K denotes the total number of classes. Thus for video-based adaptation,
the Log in Loss 1 should be updated with Loss 5.
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Fig. 1. CardiacCLIP: Video-based CLIP adaptation for few-shot LVEF prediction
integrating multi frame learning and multi-scale representations.

HGlobal representation

2.3 Video Representation via Multi Frame Learning

Typical CLIP-based video recognition models aggregate frame features via sim-
ple averaging [12,24], overlooking temporal variability. In LVEF estimation, dif-
ferent frames contribute unequally due to varying cardiac contraction phases.
Inspired by Multiple Instance Learning (MIL) [15,27,28], we introduce MFL, an
attention-based fusion mechanism that prioritizes diagnostically relevant frames.
Given an input video sequence with B frames, we extract a set of frame-level
features:
F=[fi,f....fs] eR"*C (6)

where f; € R represents the feature vector of the i-th frame, and C' is the
feature dimension. Instead of using average pooling, we introduce an attention
mechanism to learn the relative importance of each frame dynamically.

Frame Importance Estimation. we compute per-frame importance scores
using a multi-layer attention network:
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S; = W3 tanh(W2 tanh(W1 fz)) 5 (7)

where W1, Wy, W3 are learnable weight matrices. These scores are normalized
using softmax to ensure that the sum of the weights is equal to 1:

exp(s;) (8)

o= —

S exp(s;)

where «a; represents the learned weight for frame 4, ensuring higher weights for
informative frames while suppressing redundancy.

Dynamic Feature Aggregation. The aggregated video representation is
computed as:

B
Fagg - Z aifi ) (9)
=1

where Flge € R is the aggregated feature vector representing the entire video.
This formulation ensures that the model prioritizes the most relevant frames.
Finally, the aggregated feature vector is passed through a linear projection layer:

Fﬁnal = WprojFagg ) (10)

where Wyroj € RE*C is a learnable projection matrix that refines the video
representation.

By integrating MIL-inspired attention-based aggregation, our model learns
to emphasize diagnostically-relevant frames, offering a more robust, adaptive,
and interpretable approach to video-based LVEF prediction compared to the
conventional average pooling strategy. In practice, we find that the input frame
length plays a crucial role in the performance of feature aggregation and we
discuss it in the ablation study.

2.4 EchoZoom: Multi-Scale Cardiac Representation

Echocardiographic diagnosis relies on analyzing regional cardiac dynamics, par-
ticularly within the left and right ventricles and atria [7,11]. Standard vision
models process images at a fixed resolution, which limits the model’s ability to
capture multi-scale anatomical variations. EchoZoom enhances regional cardiac
representation by applying multi-resolution input scaling. As shown in the lower
right corner of Figure 1, it processes images at multiple scales (e.g., 1122, 2242),
enabling fine-grained structural analysis. Specifically, EchoZoom splits the 2242
image into four 1122 sub-images. These sub-images, along with the original 1122
image, are fed through the same pretrained model. The features extracted from
these sub-images are then combined into a larger feature map corresponding to
the 1122 image. This map is subsequently average-pooled to match the feature
map size of the original 1122 image. The final output is the fused feature map
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generated across all scales. This process enriches feature extraction without re-
quiring additional parameters, reinforcing the model’s ability to recognize subtle
morphological changes across varying resolutions.

3 Experiments

3.1 Datasets and Experiment Settings

Dataset. We evaluate our method on EchoNet-Dynamic [18], a widely used
benchmark dataset in echocardiography. It contains 10,036 apical four-chamber
echocardiogram videos collected from Stanford University Hospital using five
different ultrasound machines. Each video, averaging 175 frames, is resized to
112x112 and annotated with its corresponding LVEF label. The dataset is pre-
split into 7,465 training, 1,288 validation, and 1,277 test samples. For few-shot
evaluation, we extract subsets from the training set following the 1/2/4/8-shot
settings (Table 1).

Experiment Settings. Following EchoCLIP [4], we adopt ConvNext-Base CLIP
as the backbone for fair comparison, and the model’s pretraining dataset does
not overlap with our current dataset. Our model is optimized using RAdam [17]
for 100 epochs, starting with a learning rate of 5e-5, which is cosine-decayed to
zero. Each input clip consists of 48 frames, sampled at a stride of 2, with a batch
size of 2. To construct a typical few-shot dataset, we discretize LVEF values into
integer classes (1-100) and sample training examples accordingly, skipping any
missing classes, as detailed in Table 1. We adopt Mean Absolute Error (MAE)
and Root Mean Square Error (RMSE) as evaluation metrics to assess the model
performance.

Table 1. Sample counts under few-shot settings for EchoNet-Dynamic dataset.

Dataset ‘1—Sh0t 2-shot  4-shot  8-shot
EchoNet-Dynamic | 84 162 307 570

3.2 Results under Few-shot Setting

We mainly compare CardiacCLIP against two categories of methods: 1) Tra-
ditional LVEF prediction methods (video-based models trained end-to-end); 2)
CLIP-based methods (pretrained VLMs adapted to echocardiography).

Table 2 presents the results. CardiacCLIP consistently outperforms existing
methods, achieving a 2.07 MAE reduction over EchoNet [19] in the 1-shot setting.
Similar performance gains can be observed across other shot settings, highlight-
ing the effectiveness of our method. The performance improvement diminishes
as training data increases, a typical phenomenon in few-shot learning.
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Table 2. Comparison of different SOTA methods on EchoNet-Dynamic dataset un-
der few-shot setting. (Num) indicates the performance improvement compared to
EchoNet [19].

Method MAE | RMSE |

1-shot 2-shot 4-shot 8-shot | 1-shot 2-shot 4-shot 8-shot
Traditional
EchoNet [19] 9.32 9.17 7.49 6.81 12.11 11.89 9.92 9.19
AdaCon [6] 9.52 883 7.35 7.02 12.17 11.56 9.91 9.46
C-Mixup [34] 9.23 9.22 9.13 7.59 12.23 12.14 11.87 9.77
BalancedMSE [25] 8.50 7.87 7.55 7.05 11.22 10.18 9.65 9.35
CLIP-based
EchoCLIP [4] 10.54 9.74 9.22 9.12 13.18 12.18 11.53 11.40
NumCLIP [9] 791 7.56 7.68 6.96 9.89 9.45 9.60 8.70
Our Method
CardiacCLIP 7.25 7.11 6.79 6.42 9.06 8.89 8.49 8.02
A (2.07) (2.06) (0.70) (0.39) (3.05) (3.00) (1.43) (1.17)

3.3 Ablation Study

We conduct detailed ablation experiments to analyze the contributions of model
components, input frame length, loss functions, and aggregation methods, under
1-shot setting.

Effect of Model Components. Table 3 shows the impact of EchoZoom and
MFL, demonstrating that both modules contribute to enhanced model perfor-
mance, with their joint combination achieving the best result.

Table 3. Ablation study of CardiacCLIP on EchoNet-Dynamic dataset.

Ablation Study | EchoZoom | MFL | MAE |

Base X X 7.91
w /o EchoZoom X v 7.42
w/o MFL v X 7.50
Ours v v 7.25

Effect of Frame Length. Table 4 presents the impact of input frame length
on model performance. While shorter frame length (e.g., 16 frames) result in
higher MAE (7.89), increasing the frame length initially improves performance,
with the best MAE achieved at 48 frames (7.25). Beyond this, performance
fluctuates slightly, indicating that longer sequences do not necessarily enhance
feature extraction, likely due to increased redundancy in the input.

Effect of MFL Modules. Table 5 examines various design choices within MFL.
Our proposed MFL achieves an MAE of 7.25, while removing the final projector
increases the error to 7.53, highlighting the importance of feature transforma-
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tion. Introducing a nonlinear projector yields a slight performance drop to 7.45,
likely because the aggregated features are already well-structured. Incorporating
a gated recurrent unit (GRU) further degrades performance, increasing the MAE
to 8.26, suggesting excessive temporal dependencies may lead to overfitting.

Table 4. Ablation on frame length.

Table 5. Ablation on MFL modules.

Frame Length | MAE |
16 7.89 Aggregation ‘ MAE |
36 764 MFL 7.25
;z ,;325 w/o Projector 7.53
64 7.38 w/ Nonlinear Projector | 7.45
96 7 92 w/ GRU 8.26
128 7.94

Table 6. Ablati ion loss.
able AHIOTL 01 TEBTEsSION f08s Table 7. Ablation on aggregation methods.

Regression Loss | MAE |

Aggregation  |MAE |

MAE 7.25

MFL 7.25
SmoothL1 7.36 .

Multi-Head 10.47
Huber [13] 7.57 .

Multi-Head+GRU 8.3
MSE 7.75

Effect of Regression Loss. Table 6 investigates how different regression loss
functions impact model performance. The standard MAE loss achieves the low-
est error (7.25), while SmoothL1 (7.36) and Huber (7.57) introduce slight per-
formance degradation. MSE loss performs the worst (7.75), likely due to its
sensitivity to large errors, which may disproportionately penalize outliers.
Effect of Aggregation Methods. Table 7 evaluates the impact of different
aggregation methods. Our MFL achieves the best performance, whereas Multi-
Head Attention significantly degrades accuracy, increasing the MAE to 10.47,
likely due to feature distortion caused by excessive attention heads. In video
recognition tasks like LVEF prediction, only a subset of key frames holds crit-
ical diagnostic information. Introducing a GRU into the Multi-Head approach
improves performance to 8.3, suggesting that temporal modeling can partially
counteract attention-related issues. These findings are consistent with the obser-
vations in Table 5.

4 Conclusion

In this paper, we introduce CardiacCLIP, a novel framework for LVEF esti-
mation from echocardiogram videos, extending CLIP-based models to effectively
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capture both spatial and temporal cardiac features. Our method addresses the
limitations of prior approaches by incorporating Multi-frame Learning (MFL)
for adaptive temporal feature aggregation and EchoZoom, a multi-scale input
strategy that enhances the representation of key anatomical structures. Through
a few-shot learning paradigm, CardiacCLIP demonstrates strong generalization
with limited labeled data, making it well-suited for clinical applications. Exten-
sive experiments on the EchoNet-Dynamic dataset validate the effectiveness of
our method, achieving state-of-the-art performance in few-shot settings. These
results highlight the potential of CardiacCLIP as a robust and data-efficient so-
lution for automated echocardiographic analysis, paving the way for improved
cardiac disease diagnosis in real-world scenarios.
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