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Abstract. Emotion recognition from physiological data is crucial for
mental health assessment, yet it faces two significant challenges: in-
complete multi-modal signals and interference from body movements
and artifacts. This paper presents a novel Multi-Masked Querying Net-
work (MMQ-Net) to address these issues by integrating multiple query-
ing mechanisms into a unified framework. Specifically, it uses modality
queries to reconstruct missing data from incomplete signals, category
queries to focus on emotional state features, and interference queries to
separate relevant information from noise. Extensive experiment results
demonstrate the superior emotion recognition performance of MMQ-Net
compared to existing approaches, particularly under high levels of data
incompleteness.

Keywords: Multi-modal emotion recognition - Physiological signals -
Missing data.

1 Introduction

Mental disorders, such as anxiety disorders and post-traumatic stress disorder,
are often accompanied by dysfunctions in emotion processing, which can impair
individuals’ social abilities and quality of life [23, 15, 8]. Neurobiological studies
have demonstrated that emotion generation is closely associated with the activity
of brain regions such as the limbic system and the prefrontal cortex. Moreover,
the interactions between these brain regions and the peripheral physiological
system are reflected in physiological indicators such as heart rate, skin conduc-
tance response, and respiration [17]. Therefore, accurately identifying emotional
states is crucial for mental health assessment and intervention.

With advancements in electroencephalography (EEG) and peripheral phys-
iological signal monitoring technologies, emotion recognition methods based on
multi-modal physiological signals provide more objective and real-time emotion

* corresponding author.



2 G. Xu et al.

{(EMG ek I

GSR |

BN N J,,JW,LJA

Pt Mg,

Resp A M Aot

PPG A e

Temp

(@

Fig. 1. Challenges in robust emotion recognition from incomplete multi-modal data.
(a) Incomplete signals: Physiological signals with missing segments (dashed boxes),
highlighting the incomplete learning problem. (b) Interference: Body movements and
artifacts, complicating accurate emotion recognition.

monitoring tools for clinical applications [26, 24, 16, 22]. In recent years, many re-
searchers have explored emotion recognition using multi-modal approaches [10,
19,4]. Despite the promising results of these studies, there remain two main
challenges in this field.

Incomplete Multi-Modal Signals. A key challenge in emotion recognition
from physiological signals is the incomplete multi-modal signals. Multi-modal
emotion recognition typically involves combining physiological signals from dif-
ferent sources. However, in practical scenarios, these signals are often incomplete
due to technical issues, sensor malfunctions, or loss of data during transmis-
sion [9, 7]. For instance, the galvanic skin response (GSR) or photoplethysmog-
raphy (PPQG) signals may have missing values or even entire segments that are
unusable. As shown in Fig. 1(a), the signals from different modalities can have
gaps (indicated by dashed boxes), which result in the incomplete data. This
problem significantly hampers the learning process.

Interference from Body Movements and Artifacts. Another major
challenge is interference caused by body movements and other external arti-
facts. When individuals move their body, cough, or experience any other phys-
ical disturbance, it can generate noise in the physiological signals, especially in
EEG and GSR data. This type of interference can be caused by external factors
such as improper sensor placement, muscle contractions, or environmental distur-
bances [14]. As illustrated in Fig. 1(b), body movements and artifacts complicate
accurate emotion recognition by introducing noise into the signal data, which
reduces the signal’s reliability. This issue is particularly troublesome when work-
ing with real-time or in-the-wild emotion recognition systems, where controlling
or eliminating all physical movements is impractical. Consequently, artifacts can
lead to incorrect or ambiguous conclusions about the emotional state, further
complicating the task of robust emotion recognition.
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To address these challenges, we propose a Multi-Masked Querying Network
(MMQ-Net) for robust emotion recognition from incomplete multi-modal physi-
ological signals. The core idea of MMQ-Net is to utilize multiple queries within a
single framework. Specifically, to handle incomplete multi-modal signals, MMQ-
Net uses masked modality queries to reconstruct missing data from the available
modalities. To address the interference problem, it incorporates masked cate-
gory query and interference query to separate emotional state features from
irrelevant noise. By combining these three masked querying mechanisms in a
unified framework, MMQ-Net is able to robustly handle missing data and inter-
ference, thereby improving the accuracy and reliability of emotion recognition
in challenging settings.

Overall, the main contributions of this work can be summarized as follows.
(1) A novel method named MMQ-Net, is proposed for robust emotion recog-
nition from multi-modal physiological signals that are affected by missing data
and interference noise. (2) A multi-masked querying transformer is designed to
simultaneously reconstruct incomplete multi-modal features and reduce interfer-
ence from emotion-irrelevant information, thereby enhancing the robustness of
emotion recognition.

2 Method

2.1 Overview

Let {(x;,a;,y:)}, denote the multi-modal data with a sample size of n, where
X; = [xgl), . ,XEM
xgm) is the data from the m-th modality. The vector a; € {0,1}* indicates
whether the M modalities are present for sample ¢ (1 if available, 0 if missing).
The vector y; is a one-hot categorical variable that indicates the specific emo-
tional state. The task of this work is to develop a robust model to predict the
emotional state y, considering that the multi-modal physiological signals x may
contain missing data and interference noise.

An overview of the proposed MMQ-Net is shown in Fig. 2. The input in-
cludes various physiological signals, such as EEG, GSR, PPG, etc. These signals
are processed through respective encoders to extract multi-modal features. The
encoded feature vectors are then fed into a Multi-Masked Quering Transformer
for the learning of incomplete multi-modal information and reduction of inter-
ference. The output is used to compute three loss functions: the multi-modal
learning loss function Lg, the discriminative learning loss function Lo, and the
interference reduction loss function L.

)] represents the M modalities of physiological signals, and

2.2 Feature Extraction

In the preprocessing stage of physiological signals, we first perform data cleaning
and filtering based on Steve Luck’s procedures [12] to exclude noise components.
A notch filter is applied to remove the 50 Hz power line interference, and a 4-45
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Fig. 2. Flowchart of the MMQ-Net. Multi-model physiological signals are processed
via encoders to extract features, which are then input into a Multi-Masked Querying
Transformer to handle incomplete data and reduce interference.

Hz bandpass filter is used to further clean the data, reducing the impact of mea-
surement inaccuracies and environmental noise. Independent component analysis
is then used to remove noise from signals such as electrooculogram (EOG), elec-
trocardiogram (ECG), and electromyogram (EMG). Finally, the original data is
downsampled to 128 Hz to reduce the data volume and accelerate computation.
The above operations are used for EEG and other physiological signals.

For feature extraction, two methods are primarily used: differential entropy
(DE) and power spectral density (PSD). These methods enhance feature repre-
sentation across five frequency bands: § (4-7 Hz), o (8-10 Hz), slow « (8-13 Hz),
B (14-29 Hz), and v (30-45 Hz). DE extraction assumes a Gaussian distribution,
with the standard deviation computed every 2 seconds as the DE value. PSD
extraction uses the Welch method, applying the Hanning window function to
segment the signal and perform a fast Fourier transform to calculate the power
spectral density for each frequency band. Finally, the DE and PSD features are
fused using the multi-head attention mechanism [25] to generate a new feature
vector for subsequent analysis.

For simplicity, let f,, represent the feature extraction function for modality
m, yielding the feature £f0™ = f,.(x("™)). After feature extraction across all
modalities, we obtain FM = [f(1) .  f(M)],

2.3 Multi-Masked Querying Transformer

The Multi-Masked Querying Transformer is designed to handle incomplete multi-
modal physiological representations and reduce emotion-irrelevant information.
Specifically, this module uses multiple masked queries: modality queries (Q™),
category queries (Q®), and interference queries (Q). Masked modality queries
are used to learn missing modalities from available ones, while masked category
and interference queries are used to learn features related to emotional states
and irrelevant features, respectively.
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To learn multi-modal features from incomplete physiological representations,
modality queries Q™ are used as learnable parameters to replace missing data
in FM, encouraging modality completion. To perform attention computation
within a unified framework, category queries Q¢ and interference queries Q!
are concatenated as additional tokens with the features, yielding the following
representation:

F=F"0a+QY 0o (1-a),Q% Q] (1)

where ® denotes the Hadamard product, and the concatenation operation is
implemented at the modality level.

To prevent those missing modalities from affecting attention mechanism, a
mask matrix is introduced, ensuring that the queries only learn representations
from the available modalities. Let D be the identity matrix, and 1 the vector
of ones. The attention mask matrix M is derived from the modality indicator
vector a as follows:

M=D+1[a',1,1], (2)

where the last two elements of 1 correspond to the category query Q¢ and
interference query Q. Based on the multiple queries and the modality mask
matrix, the attention mechanism in the multi-masked querying transformer is

computed as:
_ a(E)FE)]T N
Z = softmax ( Va M) (F). (3)

This process uses the multi-head attention mechanism [20]. For convenience, the
output Z is decomposed into three parts, namely single-modality features FM
emotional state features FC, and interference features F!:

Z .= [FM FC ). (4)

2.4 Objective Function

The objective function of MMQ-Net consists of three terms: multi-modal recon-
struction loss Lg, discriminative learning loss L, and interference reduction
loss L;. For the first term, we perform multi-modal feature reconstruction at the

feature level: )
_ CAPM M2
Ln= sy O o O FY —a 0B o)

For the second term, emotional state features FC are passed through a multi-
layer perceptron (MLP) to obtain the final predicted result, which is then used
to compute the cross-entropy loss with the ground truth label y:

Lo = CEMLP(ES),yi). 0

For the third term, we aim to maximize the correlation between the label y and
the emotional state features F¢, while minimizing the correlation between the
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label y and the interference features F!. This is computed using the mutual
information criterion:

1 PN
Lr==> Iy;F/|F?). 7
I n i (y7 2| i ) ( )
Thus, the final loss function in MMQ-Net is:
L=MLr+ Lo+ 3L, (8)

where A1, A2, and A3 are non-negative trade-off parameters.

3 Experiments and Results

3.1 Datasets

We performed experiments utilizing two multi-modal physiological datasets, i.e.,
DEAP dataset [5] and MAHNOB-HCI dataset [18]. Both datasets elicit emo-
tional responses through multimedia content.

DEAP dataset encompasses recordings from 32 individuals who were exposed
to multimedia stimuli. Each subject participated in 40 sessions, during which
they watched a one-minute music video per session. The recordings captured
their physiological responses both before and during the viewing, with each ses-
sion’s data consisting of a 3-second pre-session phase and a 60-second session
phase. This dataset includes 32 channels of EEG data alongside 8 channels of
peripheral physiological signals, such as EOG, EMG, GSR, respiration, and tem-
perature readings.

MAHNOB-HCI dataset gathers data from 27 participants subjected to mul-
timedia stimuli. For this collection, each participant viewed 20 video clips while
their physiological reactions were recorded across 20 trials. These clips varied in
length from 34.9 seconds to 117 seconds, averaging 81.4 seconds with a standard
deviation of 22.5 seconds. The dataset features 32 channels of EEG signals and
6 channels of peripheral physiological signals, including ECG, GSR, respiration,
and temperature measurements.

3.2 Experimental Setup

The multi-masked querying transformer consists of an embedding layer, posi-
tional encoding, transformer encoder layers, and a classification head. Specifi-
cally, input features are projected into a 16-dimensional space using linear trans-
formations, followed by adding positional encodings to maintain sequence order.
In the multi-head attention mechanism, the head is set to 4 and the feed-forward
dimension is 128. All experiments were implemented in PyTorch, utilizing an
Adam optimizer with a learning rate of 6e-4, 51 = 0.9, 82 = 0.999, over 5000
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Table 1. Comparison under various missing rates on the DEAP dataset.

Missing rate

Category Method 0.0 0.1 0.3 0.5 0.7
CCA 66.55%  63.98%  61.91%  60.85% 59.43%
KCCA 67.20% 65.44% 64.68% 62.87% 61.05%
DCCA 71.64% 70.94% 70.79%  70.64%  68.77%
AE 75.88% 74.67% 74.37%  73.97% 71.85%

Valence SMIL 88.14% 87.44% 83.75% 81.33% 76.99%
ShaSpe 88.04%  87.08%  84.71%  83.55%  81.94%
TAE 96.77%  92.38%  89.51%  87.24%  84.76%

MMQ-Net 99.85% 95.71% 92.28% 90.97% 90.72%
(3.08% 1) (3.33% 1) (2.77% 1) (3.73% 1) (5.95% 1)

CCA 67.05% 64.28% 64.08% 62.31% 61.00%
KCCA 67.61% 66.90% 66.04% 64.73% 64.68%
DCCA 71.75% 69.48% 67.41% 67.81% 67.76%
AE 76.49% 75.53% 74.77% 72.86% 72.05%
Arousal ~ SMIL 88.35% 87.39% 83.96% 81.13% 79.21%
ShaSpe 86.98% 85.47% 84.16% 84.41% 81.74%
TAE 95.96% 92.23% 89.10% 87.18% 85.62%

MMQ-Net 99.70% 95.86% 91.47% 90.62% 90.06%
(3.73% 1) (3.63% 1) (2.37% 1) (3.43% 1) (4.44% 1)

epochs and a batch size of 1024. Hyper-parameters were selected based on cross-
validation results, with A; and Ay both set to 1, and A3 tuned to 0.01.

To comprehensively evaluate the performance of the proposed method, we
designed an extensive experimental setup. Specifically, we assessed the effec-
tiveness of CCA [3], KCCA [11], DCCA [1], AE [6], SMIL [13], ShaSpe [21],
TAE [2], and our MMQ-Net on two categories, namely Valence and Arousal.
The experiments were conducted with varying missing rates ranging from 0.1
to 0.7 to simulate real-world data conditions where missing values are common.
This design allowed us to systematically compare the robustness and accuracy
of each method under different levels of data incompleteness, providing insights
into their suitability for handling missing data in emotional signal processing
tasks.

3.3 Comparison With the State-of-the-Art Methods

Table 1 compares the performance of various methods at different missing rates
on the DEAP dataset. As the missing rate increases, MMQ-Net’s advantage
becomes more evident. For example, at a 0.7 missing rate, MMQ-Net improves
accuracy by up to 5.95% for Valence and 4.44% for Arousal over the next best
method. This demonstrates MMQ-Net’s robustness in handling high levels of
data incompleteness, making it a strong candidate for emotion recognition in
challenging conditions.

Table 2 presents the performance comparison on the MAHNOB-HCI dataset.
The results indicate that MMQ-Net consistently outperforms other methods
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Table 2. Comparison under various missing rates on the MAHNOB-HCI dataset.

Missing rate

Category Method 0.0 0.1 0.3 0.5 0.7
CCA 69.46%  67.68%  66.90% = 66.74%  65.19%
KCCA 70.86% 68.45% 67.99% 65.42% 64.88%
DCCA 73.50% 71.25%  68.30%  64.41%  61.46%
AE 77.78% 78.24% 75.68%  74.59% 72.96%

Valence SMIL 87.80% 89.59% 85.47% 82.75% 80.89%
ShaSpe 86.01%  85.16%  84.07%  79.80% 78.32%
TAE 94.09%  90.91%  88.42%  86.64%  84.46%

MMQ-Net 99.69% 96.04% 92.62% 91.69% 90.37%
(5.59% 1) (5.13% 1) (4.20% 1) (5.05% 1) (5.91% 1)

CCA 69.46% 65.66% 63.09% 59.36% 58.82%
KCCA 71.41% 68.61% 64.65% 63.87% 62.55%
DCCA 72.73% 72.57% 69.85% 68.61% 68.38%
AE 76.53% 72.42% 69.15% 65.58% 65.81%
Arousal ~ SMIL 90.29% 87.18% 83.53% 79.72% 77.23%
ShaSpe 86.17% 83.53% 84.38% 80.26% 79.10%
TAE 94.56% 90.75% 87.80% 86.95% 84.62%

MMQ-Net 99.61% 95.80% 93.55% 92.46% 91.38%
(5.05% 1) (5.05% 1) (5.75% 1) (5.52% 1) (6.76% 1)

Table 3. Ablation results of MMQ-Net.

DEAP DEAP HCI HCI
(Valence) (Arousal) (Valence) (Arousal)
MMQ-Net (w/o Lr) 86.43% 87.39% 87.72% 89.43%
MMQ-Net (w/o £;) 89.76% 89.05% 92.00% 92.15%
MMQ-Net 92.28% 91.47% 92.62% 93.55%

across all missing rates. Specifically, MMQ-Net achieves the highest accuracy for
both Valence and Arousal categories, with improvements ranging from 4.20% to
6.76% over the next best-performing method at different missing rates. This also
demonstrates the robustness and effectiveness of MMQ-Net in handling varying
levels of missing data.

3.4 Ablation Study

To examine the effectiveness of each component in MMQ-Net, we carried out
ablation studies by removing each of them from the whole framework under a
missing rate of 0.3. As shown in Table 3, removing Lz leads to a noticeable
drop in performance, with accuracy decreasing by approximately 5% for Valence
and by around 4% for Arousal on both datasets. This highlights the critical
importance of L for incomplete multi-modal learning. Similarly, when L; is
removed, the performance also decreases. These findings underscore the necessity
of £; in mitigating interference, thereby improving overall model performance.
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4 Conclusion

We introduced the Multi-Masked Querying Network (MMQ-Net), a novel method
for robust emotion recognition from incomplete multi-modal physiological sig-
nals. MMQ-Net combines multiple querying mechanisms to address challenges of
missing data and interference. Modality queries reconstruct missing data, while
category and interference queries distinguish relevant emotional features from
noise. Extensive experiments on benchmark datasets show MMQ-Net’s superior
performance, particularly under high levels of missing data. Our results demon-
strate its effectiveness in enhancing emotion recognition accuracy and reliability,
making it a promising solution for emotion analysis and mental health monitor-
ing in real-world applications.
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