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Abstract. Class-incremental learning (CIL) in medical image-guided
diagnosis requires models to retain diagnostic expertise on historical
disease classes while adapting to newly emerging categories—a critical
challenge for scalable clinical deployment. While pretrained foundation
models (PFMs) have revolutionized CIL in the general domain by en-
abling generalized feature transfer, their potential remains underexplored
in medical imaging, where domain-specific adaptations are critical yet
challenging due to anatomical complexity and data heterogeneity. To
address this gap, we first benchmark recent PFM-based CIL methods
in the medical domain and further propose Conservative-Radical Com-
plementary Learning (CRCL), a novel framework inspired by the com-
plementary learning systems in the human brain. CRCL integrates two
specialized learners built upon PFMs: (i) a neocortex-like conservative
learner, which safeguards accumulated diagnostic knowledge through
stability-oriented parameter updates, and (ii) a hippocampus-like radi-
cal learner, which rapidly adapts to new classes via dynamic and task-
specific plasticity-oriented optimization. Specifically, dual-learner feature
and cross-classification alignment mechanisms harmonize their comple-
mentary strengths, reconciling inter-task decision boundaries to miti-
gate catastrophic forgetting. To ensure long-term knowledge retention
while enabling adaptation, a consolidation process progressively transfers
learned representations from the radical to the conservative learner. Dur-
ing task-agnostic inference, CRCL integrates outputs from both learners
for robust final predictions. Comprehensive experiments on four medical
imaging datasets show CRCL’s superiority over state-of-the-art methods.
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1 Introduction

In medical image-guided disease diagnosis, continually updating diagnostic mod-
els to adapt to evolving healthcare data is critical, particularly as novel disease
categories emerge [25, 31]. However, traditional deep learning paradigms often
suffer from catastrophic forgetting when learning new tasks sequentially, signifi-
cantly hindering their scalability and long-term effectiveness. Ideally, diagnostic
models should effectively recognize both historical and newly introduced dis-
ease categories without access to explicit task identity during inference. Such a
clinical need is typically framed as class-incremental learning (CIL), which ne-
cessitates balancing the trade-off between stability (retaining existing diagnostic
expertise) and plasticity (integrating novel disease patterns).
Related Work. Traditional CIL methods fall into three categories: replay,
which retains or synthesizes historical data [5, 8, 17]; regularization, which pe-
nalizes adversarial parameter updates to preserve prior knowledge [13, 11, 22];
and adaptive architecture, which dynamically expands or conditionally activates
model components [1, 29]. However, these methods generally assume models are
trained from scratch and require extensive parameter tuning, empirically falling
short of practical deployment requirements. Recent advances in pretrained foun-
dation models (PFMs) have revitalized CIL research by leveraging their gen-
eralized feature representations [24, 33, 20, 7, 32]. Prompt-based methods [24, 23,
18] adapt PFMs via dynamic prompt pools to capture task-specific features,
though they remain constrained to Transformer architectures and necessitate
prompt pool expansion for new tasks. Beyond prompt-based methods, SLCA
[30] introduces dual learning rates for backbone and classifier tuning, coupled
with Gaussian-based classifier rectification. LAE [7] inherits SLCA’s learning
rate calibration but further proposes model merging to consolidate knowledge.
ADAM [33] demonstrates that a prototypical classifier serves as a robust baseline
and merges embeddings from a frozen PFM and a first-session adapted down-
stream model for subsequent classification. EASE [34] and MOS [19] enhance
feature representation by merging outputs from multiple task-specific adapters,
while SSIAT [20] addresses feature drift by estimating class prototype shifts
across tasks and enforcing unimodal distribution assumptions for replay-based
unified training. Despite progress in natural image domains, PFM-based CIL
remains underexplored in medical diagnosis, where domain-specific PFMs are
scarce. To bridge this gap, we harness powerful PFMs from the general domain
to take the initiative to benchmark recent PFM-based CIL methods on clinical
datasets and advance replay-free CIL strategies for evolving disease diagnosis.

To address the stability-plasticity dilemma in PFM-based medical CIL, we
present Conservative-Radical Complementary Learning (CRCL), a novel frame-
work inspired by the complementary learning systems in the human brain [12]
(as shown in Fig. 1). CRCL consists of two specialized learners built upon
PFMs: (i) a neocortex-like conservative learner, which safeguards accumulated
diagnostic knowledge through stability-oriented parameter updates, and (ii) a
hippocampus-like radical learner, which rapidly adapts to new disease categories
via dynamic and plasticity-oriented optimization. To mitigate catastrophic for-
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Fig. 1. Overview of our CRCL framework. At session t = 1, the PFM adapts to the
medical domain by adapter tuning. For t > 1, the radical learner adapts to new classes
while the conservative learner retains past knowledge and gradually consolidates new
knowledge. During inference, their outputs are fused for robust predictions.

getting while ensuring flexible and efficient knowledge integration, we introduce
dual-learner feature and cross-classification alignment mechanisms, harmonizing
representations across tasks to reconcile inter-task decision boundaries. Besides,
a consolidation process is incorporated, where knowledge acquired by the radical
learner is progressively transferred to the conservative learner. This consolidation
mechanism stabilizes long-term representations while allowing flexible adapta-
tion to new tasks. During inference, CRCL leverages second-order statistics to
enhance linear separability and integrates the complementary outputs of both
learners for robust and task-agnostic predictions. Extensive experiments on four
medical imaging benchmarks demonstrate the superiority of CRCL, significantly
outperforming state-of-the-art (SOTA) PFM-based CIL approaches.

2 Method

2.1 Preliminary

Problem Definition. CIL is defined as training a model on a sequential data
stream where new classes are incrementally introduced. Specifically, the training
set for session t can be written as Dt = {(xi,t, yi,t)}nt

i=1, where t ∈ {1, 2, . . . , T}
denotes the session index among T total sessions, and each session contains nt

instances. We assume that each session t introduces a unique set of classes Yt,
with no overlap between sessions: Yt ∩ Yt′ = ∅ for t ̸= t′. The goal is for the
model to perform well on a test set encompassing all classes introduced up to
session t, i.e., Yt = Y1 ∪ · · ·Yt.
PFM-based CIL. We aim to build a model f(x) : X → Yt that can learn
new classes incrementally without forgetting previously learned ones. Follow-
ing prior replay-free PFM-based CIL studies [20, 30, 33, 34], we consider a pre-
trained Vision Transformer (ViT) model is available for initializing f(x). We
then decompose it into a feature extraction backbone Fθbne and a linear classi-
fication layer fθcls . The backbone Fθbne extracts features from the input images,
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serving as a feature embedding function ϕ(·) mapping RD → Rd, while the
classifier layer fθcls , represented by a weight matrix W ∈ Rd×|Yt|, projects the
feature embeddings to class predictions. The model can then be formularized as
f(x) = W⊤ϕ(x), where W = [w1,w2, · · · ,wj ], with wj denoting the classifier
weights for class j. We treat the embedded [CLS] token as ϕ(x) for ViT.
Tuning with Adapter. Recent studies have explored various parameter-efficient
tuning (PET) methods to adapt PFMs for downstream tasks, including SSF [14],
VPT [9], and adapters [6]. Yet, our empirical analysis reveals that SSF and VPT
often suffer from overfitting to the current distribution, yielding unstable re-
sults on complex medical data. Consequently, we advocate adapters as the PET
strategy in our PFM-based CIL framework. Specifically, adapters are lightweight

modules that consist of a down-projection Wdown ∈ Rk×k̂, a ReLU activation

function σ, and an up-projection Wup ∈ Rk̂×k, forming a bottleneck structure.
Following [20, 34], we augment the ViT’s multilayer perceptron (MLP) layers

with adapters, as depicted in Fig. 1(a) with projected dimension k̂ equal to 64
[6]. Let xin be the input of the MLP layer, the output of the adapter-equipped
MLP is: xout = MLP (xin)+σ (xin ∗Wdown )∗Wup, where ∗ denotes matrix mul-
tiplication. During training, the PFM remains frozen, while only the adapters
and classification heads are updated. Thus, the optimizable parameters can be
denoted as: Θ = θWdown

∪ θWup ∪ θW . This adapter-based ViT fine-tuning serves
as the foundation of our replay-free PFM-based CIL model, offering a flexible
and parameter-efficient approach for adapting Transformer models to new tasks.

2.2 Conservative-Radical Complementary Learning

Balancing plasticity and stability is a fundamental challenge in PFM-based CIL,
further exacerbated when transferring generalized representations from general-
domain PFMs to the medical domain. To address this, our CRCL (Fig. 1) fea-
tures three key processes: (i) lightweight adaptation to initialize the conserva-
tive learner, enabling efficient PFM transfer while preserving generalization, (ii)
radical learner integration, inspired by the hippocampus-neocortex system, to
achieve continual complementary learning for balancing knowledge retention and
adaptation, and (iii) collaborative inference for robust task-agnostic predictions.

Model Adaptation for Conservative Learner Initialization. As illus-
trated in Fig. 1(a), we aim to bridge the gap between the ImageNet21K&1K-
pretrained PFM and downstream medical datasets in the first incremental ses-
sion (t = 1). To achieve this, we efficiently adapt the PFM to the medical do-
main with the lightweight ViT-Adapters. Specifically, we freeze the PFM back-
bone to preserve its general knowledge and only update the adapters AC along
with the classifier WC . Notably, while the classifier WC expands to incorpo-
rate new classes and updates during training, it leverages class prototypes as
the imprinted weights [16] rather than a conventional trainable layer. The gear
icon in Fig. 1 visually represents this distinction, indicating that WC under-
goes structured updates rather than standard parameter learning. In the first
session, we do not impose additional parameter constraints to ensure sufficient
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adaptation. Our training objective is to minimize the cross-entropy (CE) loss:

Lcls-C = 1
Nb

∑Nb

i=1 CE
(
W⊤

C ϕC (xi) , yi
)
, where Nb is the batch size, ϕC(xi) rep-

resents the adapted feature embeddings for input xi, and yi is the corresponding
ground-truth label.
Continual Complementary Learning. Fig. 1(b) illustrates the continual
complementary learning paradigm (when t > 1) that balances stability and plas-
ticity through the interaction of radical and conservative learners. The radical
learner, akin to the hippocampus, rapidly encodes new information by optimizing
all parameters of its dedicated adapters, AR, via backpropagation in each train-
ing session. Meanwhile, the conservative learner, reminiscent of the neocortex,
preserves consolidated knowledge while gradually integrating new patterns. This
is achieved by updating its adapters AC using an exponential moving average
(EMA) of the radical learner’s updates (represented by a wrench icon), ensuring
stable and incremental assimilation. Formally, in the the t-th (t > 1) session,
this consolidation is defined as: θAC,t

= αθAC,t−1
+ (1− α)θAR,t

, where α is the
EMA decay rate and empirically set to 0.99 [26]. To learn new tasks, the rad-
ical learner is first optimized using a standard cross-entropy classification loss:
Lcls-R = 1

Nb

∑Nb

i=1 CE
(
W⊤

R ϕR(xi), yi
)
, where WR represents the structurally up-

dated classification weights (analogous to WC), and ϕR(xi) denotes the radical
learner’s feature embedding for input xi. At task t, WR ∈ Rd×|Yt−1| expands to
WR ∈ Rd×|Yt| with the class prototypes of newly introduced classes. To ensure
compatibility between the learners’ representations and mitigate semantic drift,
we enforce feature alignment by minimizing:

Lfa =
1

Nb

Nb∑
i=1

(1− sim (ϕC(xi), ϕR(xi))) , (1)

where sim(·) utilizes cosine similarity. This regularizes the two learners to main-
tain stable feature spaces, mitigating catastrophic forgetting. Beyond feature
alignment, the cross-classification regularization loss LCR further encourages
the conservative learner’s features to remain compatible with the radical classi-
fier, reinforcing consistency in representation learning of the radical learner and
mitigating severe semantic shifts that could lead to biased decision boundaries:

LCR =
1

Nb

Nb∑
i=1

CE
(
W⊤

R ϕC(xi

)
, yi). (2)

Overall, the final loss for the radical learner is: LR = Lcls-R + λLfa + LCR,
where λ is set to 50 to ensure comparable scales for the three losses. This com-
bined objective enables the radical learner to effectively acquire new knowledge
while maintaining alignment with the conservative learner, ensuring a stable yet
adaptable continual learning process.
Collaborative Inference. The nearest class mean (NCM) classifier has shown
promise in few-shot classification. However, [15] reveals that raw class prototypes
often exhibit high correlations between classes, leading to poorly calibrated co-
sine similarities. In this regard, we adapt the strategy that projects features
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into higher-dimensional spaces and utilizes second-order statistics to decorrelate
prototypes and enhance class separability (refer to [15] for further theoretical
details). Briefly, given a test sample x and the embedded feature ϕl(x) from the
learner l, a frozen random projection matrix Wrand ∈ Rd×M is employed with
each column sampled from N (0, 1). This projection yields a length-M (M > d)
feature vector hl = σ

(
ϕl(x)

⊤Wrand

)
∈ RM , where σ is the non-linear activation

function. We then compute the Gram matrix G for the projected features, aggre-
gating information across tasks: G =

∑
t

∑Nt

n=1 hl,t,nh
⊤
l,t,n ∈ RM×M . This matrix

is incrementally computed from feature vectors across sessions 1 to t, capturing
second-order relationships and the variance structure within the feature space.
Another matrix Cp consists of the accumulated sum of projected features corre-

sponding to the same class labels, defined by Cp =
∑

t

∑Nt

n=1 hl,t,ny
⊤
t,n ∈ RM×|Yt|.

The predicted logits for learner l are then computed as:

zl = hlWl = hl(G+ βI)−1Cp ∈ R|Yt|, (3)

with β the ridge regularization parameter selected by cross-validation-based op-
timization, and I the identity matrix. As such, Wl can be interpreted as decorre-
lated class prototypes [15]. This strategy facilitates that similarity calculations
reflect both feature alignment and the underlying structure of the feature space.
During collaborative inference, logits from the conservative learner and the rad-
ical learner are summed for final logits zCR = zC + zR, effectively mimicking the
brain’s integrative decision-making process, where stable long-term knowledge
is harmonized with rapidly acquired insights. The final prediction is determined
by the index of the maximum logit: y∗ = argmax

y
(zCR).

3 Experiments

Datasets. We benchmark various methods on four medical imaging datasets,
as summarized in Table 1. Colon [10] contains H&E stained histopathology im-
ages of human colorectal cancer and healthy tissue, while Blood [2] includes
normal peripheral blood cell images from blood smears. Skin8 [21], originat-
ing from the ISIC challenge for skin lesion classification from dermatoscopy
images, exhibits significant class imbalance. MedMNISTv2 [28] is a standard-
ized biomedical image classification benchmark comprising 12 2D datasets and
6 3D datasets, designed for tasks including multi-class, multi-label, and ordinal
regression. Following [31], we focus on a subset of four 2D multi-class classifica-
tion datasets, BloodMNIST, OrganAMNIST, PathMNIST, and TissueMNIST,
dubbed MedMNIST-Sub. We use the same data splits as outlined in [4, 31].
During training, each image is resized to 224× 224 pixels.
Implementation and Evaluation Protocol. The framework is implemented
on PyTorch using NVIDIA A100 GPUs. Following [34, 33], we adopt the repre-
sentative ViT-B/16-IN1K [3] as our PFM, which is pre-trained on ImageNet-21K
and fine-tuned on ImageNet-1K. We conduct all experiments with a batch size of
48 for 20 epochs in the initial adaptation and 15 epochs in subsequent sessions,
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Table 1. Overview of medical image classification datasets.

Dataset Classes Training set Test set Task Num. Size

Colon [10] 9 70,000 30,000 4 224× 224
Blood [2] 8 11,965 5,127 4 360× 363
Skin8 [21] 8 3,555 705 4 [600, 1024]
MedMNIST-Sub [28] 36 302,002 75,659 4 28× 28

Table 2. Performance on four medical datasets. “†” indicates the necessity of replaying
prior data. The best and second-best results are bolded and underlined, respectively.

Method
Colon Blood Skin8 MedMNIST-Sub

AccAvg AccLast AccAvg AccLast AccAvg AccLast AccAvg AccLast

Joint Training - 99.98 - 99.61 - 67.73 - 73.61
Finetune 38.65 10.43 37.47 14.54 39.62 17.87 29.18 5.66

FOSTER† [22] 90.81 86.69 87.70 90.24 55.00 39.01 58.24 31.46

iCaRL† [17] 80.50 78.13 81.41 81.57 58.45 39.57 68.23 38.44

DER† [27] 85.92 85.63 86.48 87.10 48.57 23.55 69.97 42.11

ACL† [31] 85.57 85.16 76.09 82.33 58.30 57.66 81.33 65.40
L2P [24] 70.13 49.91 86.46 76.15 55.39 35.89 56.24 28.96
DualPrompt [23] 79.47 63.36 76.62 66.27 52.32 27.38 54.92 26.31
CodaPrompt [18] 81.96 66.70 72.64 61.57 50.17 32.48 61.12 28.65
LAE [7] 71.16 49.68 55.51 33.94 49.52 24.40 48.46 18.39
SimpleCIL [33] 90.10 85.41 83.85 79.79 56.61 38.30 68.07 50.63
ADAM-Adapter [33] 86.01 78.00 88.09 83.52 59.82 41.84 70.97 53.11
SLCA [30] 86.66 76.73 90.23 82.29 58.91 40.71 56.39 44.42
EASE [34] 89.62 82.48 68.85 67.60 60.40 40.43 65.11 39.26
SSIAT [20] 75.36 66.34 86.00 84.63 60.46 41.99 59.43 25.79
MOS [19] 91.46 87.60 89.27 87.39 63.80 45.82 74.59 51.80
CRCL (ours) 98.16 97.58 97.13 96.04 73.76 61.32 84.70 66.46

using SGD with momentum and a cosine-annealed learning rate starting at 0.01.
We apply random flipping and rotating for weak data augmentation. Following
[20, 30, 33, 34], we report the last session accuracy AccLast and the average ac-

curacy across all incremental sessions t, formulated as: AccAvg = 1
T

∑T
t=1 Acct.

All other methods use the same seed and PFM for a fair comparison. The im-
plementation is available at https://github.com/CUHK-BMEAI/CRCL.

Comparison with SOTA Methods. Table 3 presents the results of various
methods across four medical datasets. Joint training serves as the upper bound,
representing the ideal scenario with simultaneous access to all data, while contin-
ual PFM finetuning acts as the lower bound, highlighting severe forgetting. The
compared methods can be categorized into traditional CIL (e.g., FOSTER [22],
iCaRL [17] and DER [27]) and PFM-based CIL (e.g., ACL [31], CodaPrompt
[18], ADAM-Adapter [33], EASE [34], SSIAT [20] and MOS [19]). While tra-
ditional top-performing CIL methods achieve competitive results on Colon and
Blood, their reliance on computationally demanding tuning and data replay
raises practical concerns. PFM-based CIL methods utilize PET to enable adapt-
ability while reducing computational overhead. Yet, existing methods exhibit
notable performance variability with suboptimal results. As shown, ACL [31]
achieves competitive performance but depends on replaying prior data. ADAM-
Adapter [33], leveraging prototypes and first-session adaptation, enhances effi-
ciency but lacks continual adaptation. SSIAT [20], incorporating semantic shift
estimation, improves feature alignment but struggles with Colon, Skin8 and
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Fig. 2. The performance curves across learning sessions on four medical datasets.

Table 3. Ablation analysis on Skin8.

Setting Exclusion AccAvg (%) AccLast (%)

CRCL None 73.76 61.32
Abla-1 Model Adaptation 70.96 59.69
Abla-2 Feature Alignment Lfa 60.35 40.69
Abla-3 Cross-classification Reg. LCR 71.06 60.50
Abla-4 Lfa and LCR 58.29 38.69
Abla-5 Collaborative Inference 73.95 60.51

MedMNIST. The recent MOS [19] utilizes adapter merging and a self-refined
adapter retrieval mechanism, yet it still yields suboptimal performance. Mean-
while, prompt-based methods (L2P [24], DualPrompt [23] and CodaPrompt [18])
show overall weaker performance, likely due to the limited expressiveness of soft
prompts in handling complex distributions of medical images. We also present
the incremental performance trend of various methods in Fig. 2, observing that
most methods struggle with maintaining stability across sessions, with significant
performance drops in later stages. Encouragingly, CRCL consistently shows su-
perior adaptability to evolving medical data, making it an appealing replay-free
solution for class-incremental medical image analysis.
Ablation Analysis. To better understand CRCL, we exclude individual mod-
ules for an ablation study (Table 3) on Skin8. Excluding model adaptation (Abla-
1) results in a notable performance drop, indicating that while general-domain
PFMs provide generalizable features, domain adaptation remains essential for
medical applications. Removing Lfa (Abla-2) leads to a sharp degradation,
highlighting its key role in aligning representations across tasks and facilitating
knowledge transfer. Excluding LCR (Abla-3) causes a smaller decline, suggest-
ing that it supports consistency and mitigates forgetting but is less critical than
Lfa. Removing both (Abla-4) results in the most severe degradation, underscor-
ing their complementary roles. Omitting collaborative inference (Abla-5) slightly
improves average accuracy but reduces final performance, indicating that its ab-
sence may cause overfitting to earlier tasks and compromise overall robustness.
These results verify that each CRCL component contributes to improving perfor-
mance, collectively ensuring an effective balance between stability and plasticity.

4 Conclusion

In this paper, we introduced the Conservative-Radical Complementary Learn-
ing (CRCL) framework, a replay-free approach for class-incremental learning
in medical imaging. CRCL integrates a stability-focused conservative learner
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with a plasticity-driven radical learner, effectively harmonized through feature
and cross-classification alignment, while a progressive consolidation mechanism
transfers knowledge from the radical to the conservative learner to ensure long-
term retention. Extensive benchmarking on four medical datasets demonstrated
that CRCL outperformed recent top-performing methods. By bridging general-
domain pretrained foundation models with clinical demands, CRCL advances
scalable and lifelong diagnostic systems that adapt to evolving disease diversity.
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