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Abstract. Transfer learning, by leveraging knowledge from pre-trained
models, has significantly improved the performance of downstream tasks.
However, as deep neural networks continue to scale, full fine-tuning poses
substantial computational and storage challenges in resource-constrained
environments, limiting its practical adoption. To address this, parameter-
efficient fine-tuning (PEFT) methods have been proposed to reduce com-
putational complexity and memory requirements by updating only a
small subset of parameters. Among them, matrix decomposition-based
approaches such as LoRA have shown promise, but often struggle to fully
capture the high-dimensional structural characteristics of model weights.
In contrast, high-order tensors offer a more natural representation of neu-
ral network parameters, enabling richer modeling of multi-dimensional
interactions and higher-order features. In this paper, we propose tCUR-
LoRA, a novel fine-tuning method based on tensor CUR, decomposition.
By stacking pre-trained weight matrices into a third-order tensor and
applying tensor CUR decomposition, our method updates only the com-
pressed tensor components during fine-tuning, thereby substantially re-
ducing both computational and storage costs. Experimental results show
that tCURLoRA consistently outperforms existing PEFT approaches on
medical image segmentation tasks. The source code is publicly available
at: https://github.com/WangangCheng/t-CURLora.
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1 Introduction

Transfer learning has significantly improved the performance of target tasks, es-
pecially in data-scarce scenarios, by leveraging knowledge from pre-trained mod-
els [19,23]. However, as deep learning models continue to scale, full fine-tuning
incurs substantial computational and storage costs in resource-constrained envi-
ronments, limiting its practical applicability. To address this challenge, parameter-
efficient fine-tuning (PEFT) methods have been introduced. By reducing the
number of parameters that need to be updated in deep neural networks (DNNs),
PEFT methods effectively lower computational complexity and storage demands,
and have emerged as a prominent research focus in recent years [6,9,12].

Low-Rank Adaptation (LoRA) is a well-established PEFT method that re-
duces the number of trainable parameters by introducing low-rank matrices to in-
crementally update pre-trained weights in DNNs, while maintaining high model
performance [12]. To further improve generalization, Hydra extends this idea
through a multi-head low-rank adaptation strategy, combining parallel and se-
quential branching structures to enhance model expressiveness [14]. PiSSA, built
upon singular value decomposition (SVD), improves fine-tuning efficiency by fo-
cusing on the dominant singular values and their corresponding vectors [18].
In parallel, both CURLoRA and PMSS leverage CUR matrix decomposition to
further optimize adaptation. CURLoRA mitigates catastrophic forgetting during
continuous learning [7]|, whereas PMSS improves adaptability to complex tasks
by selecting skeletal substructures from pre-trained weight matrices [22].

Current PEFT methods based on low-rank adaptation predominantly rely on
matrix decomposition. However, such approaches often struggle to capture the
high-dimensional structural properties of DNN weights. In contrast, high-order
tensors offer a more natural and expressive representation, enabling the modeling
of complex multi-dimensional interactions and higher-order feature dependencies
[20]. Incorporating tensor decomposition into PEFT has the potential to not only
improve the efficiency of transfer learning, but also to reveal latent structures
embedded within high-dimensional weight representations.

In this paper, we propose tCURLoRA, a key substructure fine-tuning method
based on tensor CUR, decomposition. Specifically, we stack pre-trained weight
matrices from multiple layers along the frontal dimension to form a third-order
tensor, which captures shared architectural patterns across transformer layers.
This tensorized structure facilitates the application of tensor CUR decomposi-
tion, enabling more effective modeling of cross-layer correlations than traditional
matrix-based approaches. During fine-tuning, only the compressed tensor com-
ponents are updated, substantially reducing the number of trainable parameters
and minimizing both computational and memory overhead. The main contribu-
tions of this work are as follows:

— We propose tCURLoRA, which leverages tensor CUR decomposition on
stacked pre-trained weights to exploit high-dimensional structures and en-
able efficient adaptation by updating only the most informative components.
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— Experimental results on three transfer learning tasks demonstrate that tCUR-
LoRA consistently outperforms existing PEFT baselines in segmentation ac-
curacy under limited data conditions.

2 Method

2.1 Overall Architecture

Fig. 1. Comparison of PEFT Methods: Matrix vs. Tensor CUR Decomposition. (a)
Matrix CURLoRA fine-tunes weight matrices independently. (b) tCURLoRA stacks
weight matrices into a 3D tensor for fine-tuning. Blue indicates frozen parameters,
orange indicates updated parameters, and * denotes the tensor product.

Figure 1(a) illustrates a PEFT method based on matrix CUR decomposition
[7,22]. In this approach, matrix CUR decomposition is independently applied to
each pre-trained weight matrix for fine-tuning. Let W, e RM*"2 4 =12 ...,n3
denote the ng pre-trained weight matrices. During fine-tuning, these matrices
remain frozen, while their increments AW, are updated. The update rule is
given by:

WZZWZ'FAWl:WZ-FCzUZRZ, t=1,2,...,ns, (1)

where C; € R™*¢ contains ¢ sampled columns from Wi, and R; € R"™*"2 contains
r sampled rows. Both C; and R; remain fixed during fine-tuning, while U; € R¢*"
is initialized to zero and optimized. To simplify hyperparameter tuning, ¢ and r
are typically set equal [7,22].

Figure 1(b) shows the proposed tCURLoRA, which extends matrix CUR to
the tensor setting in order to better exploit high-dimensional structural patterns.
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Specifically, pre-trained weight matrices are stacked along the frontal dimension
to form a third-order tensor W € R *"2X"3_Fine-tuning is performed via tensor
CUR decomposition, expressed as:

W=W+AW=W+C*UxR, (2)

where C € R™ > and R € R"™*"2*" are fixed low-rank tensors obtained
from the tensor CUR decomposition of W, and U € R"™™"*"3 is a learnable
tensor initialized to zero. The symbol “x” denotes the tensor product. Here, r
represents the number of sampled rows and columns shared across slices.

2.2 Tensor CUR Decomposition

The tensor CUR decomposition adopted in this work is based on the tensor
product (t-product) framework [13,16].

Definition 1. Let A € R™*"2%"3 gnd B € R™*!X"3 be two third-order tensors.
The t-product A x B yields a tensor of size ny X I X ng, defined as:

A x B = fold (circ(A)MatVec(B)) ,
where the operators circ, MatVec, and fold are described below.

The expressions for circ(A) and MatVec(B) are given by:

A Ay, Ay B,
A2 A1 v A3 Bs

circ(A) = | . .. .|, MatVec(B)=| . |,
A’I’Lg An371 e Al B’I’L3

where A; = A(:,:,4) and B; = B(:,:, i) denote the ith frontal slices of tensors A
and B, respectively. The fold operation transforms the matrix MatVec(B) back
into the original tensor B, i.e., fold(MatVec(B)) = B.

It is known that a block circulant matrix can be diagonalized via the Discrete
Fourier Transform (DFT) [8], i.e., (F'® I, )circ(A)(F* ® I,,,) results in a block-
diagonal matrix, where F' € R"3*"s ig the DFT matrix, F* is its conjugate
transpose, ® denotes the Kronecker product, and I,, is the n; X n; identity
matrix. In addition, we have:

cire(A)MatVee(B) = (F*®@1,.,) (F ® Iy, )cire(A)(F* @ I,,,)) (F®I,,)MatVec(B).

Thus, the t-product can be efficiently computed as follows: (i) apply the DFT
along the third dimension of tensors A and B to transform them into the fre-
quency domain; (ii) perform matrix multiplication on corresponding frontal
slices; (iii) apply the inverse DFT along the third dimension of the resulting
tensor to obtain the final output.

The tensors C and R in Equation (2) are derived via the tensor CUR de-

composition of VN\/, following the procedure in [5]. Specifically, we first apply the
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Fast Fourier Transform (FFT) along the third dimension of W € R Xn2xn3 t
obtain - .
w = ftt(W, ], 3).

To evaluate the importance of columns, we define a column score «; as:
223:1 ”W(vjv k)”Q
>t ki IG5, B2

where || - ||2 denotes the £5-norm of a vector. The top r columns with the largest
scores are selected to form index set J. Similarly, we define the row score j; as:

5 = Doy WG, T, )2
Doty 2ty VG, T, E)l2
The top r rows form index set I. Using sets I and J, we extract:

C= 17\7\(:,57,:)7 U= W(I, J, 1), R = W(I,:,:).

j =

i=1,2,...n. (4)

Finally, we apply the inverse FFT along the third dimension to obtain the final
decomposition components:

~

C=ifft(C,[],3), U =ifft(Ud,[],3), R =ifft(R,][,3),

leading to the approximation W ~ C+lUd t¥R, where U' denotes the MoorePenrose
inverse of U.

2.3 tCURLoRA for Fine-Tuning UNETR Parameters

We apply tCURLoRA to fine-tune the UNETR network [10], which comprises
a Transformer-based encoder with 12 layers and a convolutional decoder, con-
nected by deconvolution and convolution layers. Given that most parameters
reside in the Transformer modules, tCURLoRA fine-tunes the Transformer mod-
ules while fully updating the decoder parameters and keeping the skip connection
parameters frozen.

Each Transformer layer consists of two primary components: Multi-Head Self-
Attention (MHSA) and a Multi-Layer Perceptron (MLP). In the MHSA module,
the queries, keys, values, and outputs are generated using projection matrices
W, Wi, Wy, W, € R4¥4. These are divided into N, attention heads, where each
head uses its own set of matrices Wq(l), W,EZ), Vngl), Wéz) € R with dj, = d/Ny,
and 1 =1,2,..., Nj. The output of the MHSA module is computed as:

xwiPw" xT
Vdp,

The MLP module contains two fully connected layers (biases omitted), expressed
as:

Np,
MHSA(X) = softmax ( ) XWOWD”,
i=1

MLP(X) = GELU(XWuyup)Waown,
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where GELU is the Gaussian Error Linear Unit activation function [11], and
Wup € R&4D Ty own € R¥X4 are the weights of the two layers.

Each Transformer layer therefore contains four d x d matrices from the MHSA
module and two matrices—d X 4d and 4d x d—from the MLP module. Across 12
layers, this results in 48 d x d matrices, 12 d x 4d matrices, and 12 4d x d matri-
ces. These are concatenated along the frontal dimension to form three tensors:
Wyo € RIXAE WY, e RADAZ and Wypyy, € RIX4X12 Tn tCURLORA, these
tensors are fine-tuned independently to enable efficient model optimization.

3 Experiments

3.1 Datasets

The UNETR model is first pre-trained on the BraTS2021 dataset [1], which
contains multimodal magnetic resonance imaging (MRI) data, including T1,
T1ce, T2, and FLAIR modalities. For each patient, the image resolution is 240 x
240 x 155 with a voxel size of 1 x 1 x 1 mm?. The dataset provides detailed tumor
annotations for 1,251 cases, segmented into three regions: enhancing tumor (ET),
peritumoral edema/infiltrative tissue (ED), and necrotic tumor core (NCR).

We then apply the tCURLoRA method to transfer the pre-trained UNETR
segmentation model to three downstream datasets: EADC-ADNI [4], LPBA40
[21], and UPENN-GBM |[2]. The EADC-ADNTI dataset, derived from the ADNI
database, includes MRI scans of 135 patients with a resolution of 197 x 233 x 189
and a voxel size of 1 x 1 x 1 mm3. The ADNI project, launched in 2003,
was initially designed to assess biomarkers for tracking mild cognitive impair-
ment (MCI) and early Alzheimer’s disease (AD), and now focuses on validating
biomarkers for clinical trials and enhancing data diversity (http://adni.loni.
usc.edu/). Hippocampal annotations are based on the harmonized segmenta-
tion protocol proposed by the European Alzheimer’s Disease Consortium and
ADNTI [4] (http://www.hippocampal-protocol.net). During quality control,
five cases with annotation inconsistencies were identified and excluded to ensure
labeling accuracy.

The LPBA40 dataset, developed by the Laboratory of Neuroimaging (LONI),
comprises 3D brain MRI scans from 40 healthy adults, with a resolution of
256 x 124 x 256 and voxel dimensions of 0.8938 x 1.500 x 0.8594 mm?3. It provides
detailed manual annotations for 56 brain tissues and structures. In this study,
only hippocampal annotations are used to evaluate the proposed method.

The UPENN-GBM dataset contains MRI scans from 630 glioblastoma pa-
tients collected at the University of Pennsylvania Health System and made pub-
licly available via the Cancer Imaging Archive (TCIA) [2]. All scans were ac-
quired pre-operatively using a 3T MRI scanner, with imaging modalities includ-
ing T1, T2, contrast-enhanced T1 (T1GD), and FLAIR, along with correspond-
ing segmentation labels. A subset of 147 scans was manually annotated by clini-
cal experts to delineate three tumor sub-regions: necrotic core (NC), peritumoral
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edema (ED), and enhancing tumor (ET). In this study, we use these 147 expert-
annotated cases, selecting the T1GD modality and defining the Whole Tumor
(WT) region—comprising all three sub-regions—as the segmentation target.
All images from the aforementioned datasets were skull-stripped and regis-
tered to the MNI152 standard space, resulting in a uniform voxel size of 1 x1x 1

mm3 .

3.2 Experimental Details

We conducted experiments using PyTorch on two NVIDIA GeForce RTX 4090D
GPUs. During pre-training, we merged the three annotated tumor sub-regions
in the BraTS2021 dataset into a single tumor region for binary segmentation,
using only the T'lce modality. We split the 1,251 publicly annotated cases into
training (1,000), validation (125), and test (126) sets following an 8:1:1 ratio.
We configured the hyperparameters according to the UNETR paper [10].

In the fine-tuning phase, we randomly selected five samples from each of
the EADC-ADNI and LPBA40 datasets for training, with the remaining sam-
ples used for testing. For the UPENN-GBM dataset, 10% of the samples were
used for training and the remaining 90% for testing. This setting reflects the
relatively consistent anatomical structure of the hippocampus compared to the
higher variability of brain tumors, thereby simulating different levels of data
scarcity. We trained the models using the Adam optimizer with a batch size of 4
and a polynomial learning rate decay schedule, starting with an initial learning
rate of 0.001 and applying a decay factor of 0.9 per iteration. Random cropping
of size 128 x 128 x 128 was applied during training. Data augmentation tech-
niques included: (1) random mirroring with a probability of 50%, (2) intensity
shifts within the range [—0.1,0.1], and (3) scaling within the range [0.9,1.1].
The network was trained for 1,000 epochs using Dice loss with L2 regularization
(weight decay of 1077).

During testing, 128 x 128 x 128 patches were extracted using a non-overlapping
sliding window strategy. The final segmentation was obtained by averaging the
outputs from the last four training epochs. Post-processing was performed to
eliminate false positives by identifying connected components and removing
those with a volume smaller than 1 cm?, which were considered background.

3.3 Experimental Results

We compared the proposed tCURLoRA with several PEFT methods, including
Full fine-tuning (Full), Linear probing (Linear), LoRA [12], Adapter [17], SSF
[15], LoTR [3], PISSA [18], and CURLoRA [7]. For rank-based methods (LoRA,
Adapter, LoTR, PISSA, CURLoRA, and tCURLoRA), we tuned the rank r
on the EADC-ADNI dataset. The optimal values were » = 32 for LoRA and
Adapter, r = 2 for LoTR, PISSA, and CURLoRA, and r = 8 for t CURLoRA.
These settings were used in subsequent experiments unless otherwise specified.
Table 1 presents the segmentation performance on the EADC-ADNI, LPBA40,
and UPENN-GBM datasets. The proposed tCURLoRA method comprises 2.683
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Table 1. Comparison of segmentation results of different fine-tuning methods on three
datasets, in terms of Dice (%) and HD95 (mm) metrics. The best results are highlighted
in bold.

Method #Params (M) EADC-ADNI LPBA40 UPENN-GBM
Dice HD95 Dice HD95 Dice HD95
Full 90.011 83.79 5.839 79.91 7.175 69.95 32.280
Linear 59.348 83.46 5.344 80.62 6.483 72.42 29.401
LoRA [12] 7.397 84.35 5.334 80.17 6.618 72.51 29.799
Adapter [17] 7.987 84.08 5.663 79.72 6.793 73.46 33.357
SSF [15] 2.883 83.73 5.326 79.08 6.904 72.29 28.762
LoTR [3] 2.703 84.05 5.394 80.21 7.011 71.14 32.093
PiSSA [18§] 2.974 84.45 5.603 80.62 6.584 72.56 31.331
CURLoRA [7] 2.679 84.64 5.549 79.96 6.659 72.73 29.387
tCURLoORA (ours) 2.683 84.95 4.855 81.12 6.305 74.28 30.550

million (M) parameters, comparable to SSF, LoTR, PISSA, and CURLoRA,
while requiring only 2.98% of the parameters used in full fine-tuning, thereby sig-
nificantly improving training efficiency. Compared with full fine-tuning, tCUR-
LoRA improves the Dice coefficient by 1.16%, 1.21%, and 4.33%, and reduces the
HD95 metric by 0.984 mm (16.85%), 0.870 mm (12.13%), and 1.73 mm (5.36%)
on the three datasets, respectively, indicating enhanced segmentation accuracy.
Furthermore, tCURLoRA achieves the highest Dice scores across all datasets,
further demonstrating its superior performance in medical image segmentation.

We also evaluated training efficiency in terms of per-epoch runtime and mem-
ory consumption. Under identical experimental settings, tCURLoRA achieves
495 ms per epoch and utilizes 11.72 GB of memory, ranking second among all
PEFT methods, just behind CURLoRA. In comparison, LoRA requires 562 ms
and 15.90 GB, while full fine-tuning takes 684 ms and 18.28 GB. These results
underscore the practical advantages of tCURLoORA in resource-constrained envi-
ronments. Figure 2 presents qualitative segmentation results, including 2D slices
and 3D surface renderings. The predictions generated by tCURLoRA closely
match the ground truth (GT), particularly in regions with complex anatomi-
cal structures, effectively preserving fine details while minimizing segmentation
erTors.

4 Conclusion

This study proposes tCURLoRA, a tensor CUR decomposition-based fine-tuning
method that improves the efficiency of DNNs, with a focus on medical image
segmentation. By reducing learnable parameters and controlling computational
complexity, tCURLoRA addresses challenges in training cost, memory usage,
and scalability, while maintaining high segmentation accuracy. Future work may
explore its extension to broader tasks and datasets, particularly in multimodal
and large-scale segmentation scenarios. Further optimization could enhance its
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Full Linear LoRA Adapter LoTR PiSSA CURLoRA tCURLoRA
EADC- - - - H - - - -
ADNI
3D
LPBA40

Fig. 2. Qualitative Segmentation Results: 2D Slices and 3D Surfaces Across Datasets.

adaptability to real-world applications, making tCURLoRA a practical tool for
efficient deep learning.
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