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Abstract. Adapting pretrained Vision Language Models like CLIP, for
medical image analysis in federated learning (FL) offers cross-modal in-
sights while preserving privacy. However, effective cross-domain feder-
ated adaptation requires intensive fine-tuning and knowledge sharing,
challenging in low-resource medical practice due to the divergence be-
tween pretrained natural image and medical imagery. Moreover, the sig-
nificant statistical heterogeneity (non-IID) of medical data exacerbates
these challenges. To address these issues, this paper introduces a frame-
work that tames CLIP for non-IID federated medical image classification.
This develops client-specific personalized models by reinforcement and
constrain local cross-modal alignment, enabling the models to integrate
client-specific and globally common knowledge. This approach not only
addresses non-IID challenges but also optimizes the trade-off between
performance and efficiency. Extensive experiments on real-world medical
image datasets confirm the effectiveness and superiority of our FedTCA.

Keywords: Federated Vision-language Models · Medical Image Classi-
fication · Prompting · Cross-domain Adaption · Cross-modal Alignment

1 Introduction

Advances in deep medical image classification models rely heavily on extensive
training data [5]. However, the availability of such data is often constrained,
and medical organizations hesitate to share sensitive information due to privacy
laws [11], making centralized training impractical. Furthermore, the limited data
access within each organization impedes the acquisition of broader knowledge
from exclusive use of their proprietary datasets. Federated Learning (FL) [20]
has emerged as a promising learning paradigm, allowing multiple organizations
to collaboratively train models while ensuring privacy and eliminating data silos.

Statistical heterogeneity (non-IID) in medical image data across organiza-
tions complicates the development of robust models through vanilla FL, hin-
dering performance consistency [3]. Personalized FL (PFL) addresses this by
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developing client-specific models that integrate local insights with global knowl-
edge to enhance performance [26]. One common method involves adding con-
straint terms, such as Moreau envelopes [26] or meta-learning techniques [10],
to optimization objectives to foster personalization. However, these methods
often overlook the model’s sensitivity to non-IID data. To counter this, some
strategies improve personalization by localizing parameters sensitive to heteroge-
neous data, such as classifiers [1, 25, 30] or normalization layers [16]. Nonetheless,
skewed data distributions can cause these models to overemphasize simple pat-
terns and neglect complex minority data, increasing local bias and diminishing
generalizability. Moreover, these approaches often require the transmission of nu-
merous model parameters to facilitate knowledge exchange, and developing and
transmitting large-scale models from scratch—which are essential for optimal
performance—is impractical in resource-constrained healthcare environments.

Using advanced pretrained models like the vision-language model CLIP [23],
pretrained on extensive multimodal data, can bypass the need for costly training
from scratch [2, 23]. CLIP, which maps images and texts into a unified repre-
sentational space, potentially lowers computational costs and deepens insights
in federated medical image analysis [2, 27, 17]. However, empirical analyses [15]
suggest that CLIP often falls short in medical image classification due to the sig-
nificant mismatch between training on natural images and applying to medical
images, impairing effective cross-domain knowledge transfer [15]. While exten-
sive fine-tuning might address this, it requires substantial resources. Moreover,
the complexity of non-IID data in FL environments complicates adaptation.
Although FACMIC [27] introduces a lightweight feature attention module and
adaptive loss to balance global and local features, it still grapples with trade-
offs between global knowledge and local personalization, potentially introducing
decision biases. Additionally, communication overhead remains a crucial chal-
lenge. This raises an essential research question: Can we reduce the bias between
global and personalized knowledge while maintaining efficiency in adapting the
pretrained CLIP to federated medical image classification with non-IID data?

This paper presents FedTCA, designed to address the research problem out-
lined above. We introduce a Prompt Restyling strategy that replaces traditional
hand-crafted prompts with informative, learnable, and domain-specific alterna-
tives. This strategy also incorporates a low-rank adaptation to enhance pre-
trained models’ capacity for cross-domain knowledge transfer. Additionally, we
propose the Twin Cross-modal Alignment (TCA) to mitigate learning biases
from non-IID data and to optimize the balance between global and personalized
knowledge. TCA improves local visual-text alignment by integrating personal-
ized and global insights and conceptualizing global-local knowledge transfer as
an optimal transport problem for efficient resolution. To reduce communication
overhead, clients transmit only a subset of parameters. Key contributions are:

– FedTCA, a framework that adapts pretrained CLIP to federated medical
image classification with non-IID data while keeping efficiency.

– Prompt Restyling, a method refines prompts with informative, context-aware,
and domain-specific alternatives for better cross-domain adaptation.
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– Twin Cross-domain Alignment, a approach achieves forward-looking visual-
text alignment by effectively integrating personalization and global insights.

– Extensive experiments on four real-world medical imaging datasets demon-
strate the effectiveness and superiority of FedTCA.

2 Methodology

2.1 Problem Definition

Considering a FL framework involving multiple medical organizations, each hold-
ing a labeled medical images dataset (x, y) ∈ Di across ni classes. This frame-
work includes a server for model aggregation. Due to non-IID data distributions
among clients, where Pi(y) ̸= Pj(y) yet Pi(x|y) = Pj(x|y).To tackle this chal-
lenge, we aim to develop personalized models that integrate both client-specific
knowledge and shared insights, utilizing the capabilities of pretrained CLIP. Al-
though clients can bypass the huge burden of model initialization with large
medical datasets by using pretrained models, cross-domain knowledge transfer
(natural to medical images) continues to pose significant challenges on local
computational resources, global communication overhead and privacy.

2.2 Framework: FedTCA
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Fig. 1. Schematic diagram of our proposed FedTCA framework. Note that the global
prompt learner on the client is identical to the local one upon framework initialization.

Fig. 1 shwos our framework, where clients employ a pretrained CLIP model
consisting of image encoder Eimage and text encoder Etext. During local up-
dates, we restyle the original prompt with a generator, use Prompt Learner
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for context-aware embeddings, fine-tune Eimage and Etext with low-rank adap-
tion (LoRA) [14] for rapid adaptation, and apply optimal transport-based Twin
Cross-modal Alignment for cross-modal alignment. Clients globalize only the
Prompt Learner, keeping other parameters local to ensure personalization and
privacy. Next, we will introduce these components in details.

Prompt Restyling. Prompting effectively activates task-specific capabilities
in VLMs, but CLIP’s hand-crafted prompts ’A photo of a [CLS]’ not friendly
to medical images because they lacked targeted medical knowledge and sen-
sitivity to detail, resulting in an inability to effectively transfer cross-domain
knowledge and align multi-modal representation. To address this, we propose
a Prompt Generator to restyle the original prompt by integrating four aspects
of domain-specific knowledge: [Dataset Description], [Task Description],
[Input Sample Statistics], and [Task Difficulty]. A example is as below:

This dataset consists of microscopic peripheral blood cell images. Predict the
label given the input sample from 3-class including eosinophil, erythroblast and
platelet. The input sample has a minimum of 17.21, a maximum of 124.1, and
a median of 59. The gray-level covariance matrix are M . The task is easy.

The restyled prompt refines medical-specific knowledge and enhances pattern
recognition for text encoding. Subsequently, this prompt, denoted as Ωr, replaces
the original to initialize the Global Prompt Learner Pg and the Personalized
Prompt Learner Pp via Pg(Ωr) and Pp(Ωr). Our Prompt Learner distinguishes
itself from CoOp’s [31, 32], which adds a learnable vector at specific positions, by
incorporating learnable parameters for each token, thereby enhancing context-
awareness and facilitating cross-modal alignment in medical knowledge.

Local Updating. We used low-rank adaption (LoRA) [14] to improve cross-
domain knowledge transfer while keeping efficiency. It adapts the Query and
Value of attention blocks in both Eimage and Etext, generating low-rank matrices
A ∈ Rd×r and B ∈ Rr×d from pretrained weights W ∈ Rd×d. These matrices
transform middle image representations via X = WX +AB, with only A,B
being trainable, optimizing with the number of dimension d and rank value r,
where r ≪ d. In LoRA, A is randomly initialized and B is initialized to zero.

Twin Cross-modal Alignment. Non-IID data across clients can leads to a
learning bias in personalized models where simpler majority representations are
favored over more complex minority ones. To achieve a balance between global
and personalized knowledge, we propose Twin Cross-modal Alignment (TCA) to
strengthen the collaboration between global and local prompt learners based on
Optimal Transport (OT) [21], effectively addressing both label shift and feature
shift data heterogeneity. Firstly, we define the global and personalized text rep-
resentation as Tg ∈ RL×d and Tp ∈ RL×d with the corresponding combination
T = [Tg,Tp] ∈ Rd×2. We consider learning an OT plan T that aligns both global
and local text representation T with vision representation X ∈ RV×d. By rep-
resenting features as samples from discrete distributions, the cost matrix can be
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represented by the cosine distance between T and I as C = 1− [XTT ] ∈ RV×2,
then the optimization objective of the optimal transport is formulated as:

dC(α, β) = min
T ∈U(α,β)

< C, T >,U(α, β) = {T ∈ RV ×2
+ | T 1l2 < α, T ⊤1lV = β} (1)

where < ·, · > is Frobenius dot-product, U(α, β) is the solution space of T with
α ∈ RV , β ∈ R2 that are essentially marginal probability vectors which satisfy
||α||1 ≥ ||β||1 = γ (γ ∈ [0, 1]). The difference between Eq. 1 and formulation
in PLOT lies in their use of classical OT with two hard equality constraints as
Eq. (3). This forces prompts to map toeach image patch, potentially causing
them to capture someclass-irrelevant information from the image and thereby
influencing the final results. In contrast, our method relaxes one of the equality
constraints, allowing prompts to concentrate solely on the most relevant image
patches rather than the entire content of the image. Additionally, by controlling
γ, our method owns the ability to regulate the mapping size of prompts on the
feature map. In addition, for fast optimization, we add an entropic regularization
term following Sinkhorn algorithm [7] to achieve lightspeed computation as:

dC(α, β) = min
T ∈U(α,β)

< C, T > +η < T , log T >, (2)

where η > 0 is a hyperparameter. We further reformulate Eq. 2 as a Kullback-
Leibler (KL) projection with an exponential reference distribution e−C/η to ex-
plicitly minimize KL divergence as the optimization objective. The solution space
U(α, β) is defined as the intersection of two convex, non-affine sets as:

dC(α, β) = min
T ∈U(α,β)

ηDKL(T ||e−C/η),

C1 ≜ {T ∈ RV×2
+ | T 1l2 ≤ α}, C2 ≜ {T ∈ RV×2

+ | T ⊤1lV = β}.
(3)

We employ a rapid implementation of Dykstra’s algorithm [9], which effectively
scales iterative KL projection between C1 and C2 by leveraging matrix-vector
multiplications exclusively. Initializing Q = exp(−C/η) and v(0) = 1l2, a fast op-
timization solution is achieved within a few iterations as T ∗ = diag(u(t̂))Qdiag(v(t̂)),
where t̂ is the iteration, and in each iteration u(t̂) = min(1lV /Qα, 1lV ) and
v(t̂) = 1l2/Q

T
β u

(t̂) with Qα = Q/diag(α)1lV×2 and QT
β = QT /diag(β)1lV×2.

Therefore, we can get the optimal transplort plan T ∗ and the final Wassertein
distance dC , then the twin cross-modal alignment score can be formulated as:

LTCA =
exp(cos(Eimage(X),Etext(T ))/τ)∑n
i exp(cos(Eimage(X)),Etext(T )/τ)

⇒ exp((1− dC,k)/τ)∑n
i exp((1− dC,c))/τ

. (4)

After this, we fix the plan T ∗ and optimized prompt learner in both global and
local simultaneously for a specific client through standard cross-entropy loss.

Communication. During communication phase, only Global Prompt Learner
Pg is uploaded, while other parameters (i.e., Local Prompt Learner Pp and low-
rank matrix A/B) remain locally to ensure personalization and privacy. The
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server updates Pg based on FedAvg: Pt+1
g =

∑
i∈Ct

κPt
g,i, where κ is the sample

ratio from the i-th client to the total, and t denotes the round. This updates the
Global Prompt Learner for subsequent training rounds.

3 Experiment and Results

Datasets. We used four publicly available medical imaging datasets [28]: Blood-
MNIST, TiuuseMNIST, and OrganMNIST 2D and OrganMNIST 3D, each with
images of 224× 224. Considering the original dimensions of the 3D dataset are
64x64x64, we resized each two-dimensional slice (64×64) to 224×224, resulting
in dimensions of 224 × 224 × 64 to match the model input requirements. We
divided the images into 20 clients (10 clients for OrganMNIST 3D) according
Dirichlet distribution as Dirichlet(λp), where p is the prior class distribution
and λ adjusts the non-IID severity, the lower λ, the higher the degree of non-
IID. We evaluated three values of λ ∈ {0.1, 0.3, 0.5} to assess performance across
various non-IID scenarios. Dataset details and distribution are shown in Fig.2.

Blood Cell Microscope 
[17,092 samples, 8 classes]

Kidney Cortex Microscope
[236,386 samples, 8 classes]

Abdominal CT (2D)
[58,830 samples, 11 classes]

Abdominal CT (3D)
[1,742 samples, 11 classes]

Fig. 2. Datasets. (Left) partial sample visualization; (Right) distribution in FL setup.

Implementation. We use the ViT-B/16 [8] as the image encoder for both
non-CLIP baseline and CLIP-based baseline. All were trained over 100 commu-
nication rounds, each consisting of a single local epoch for fast adaption, with
50% join ratio and SGD at a learning rate of 1e−4. By default, the rank in LoRA
is set to 4 , and batch size is 32. For task difficulty in Prompt Restyling, we assign
hard/medium/easy corresponding to λ = 0.1/0.3/0.5. The results were evalu-
ated based on Top-1 accuracy, averaged over five trials, with standard deviations
reported. All algorithms are implemented on an Nvidia A2 (16GB) GPU.

Compare with SOTA FL. We compared with FL baselines: FedAvg [20],
FedBN [16], PerFedAvg [10], FedALA [29], FedCLIP [18], and FACMIC [27].
Table 1 demonstrates that our FedTCA consistently outperforms both general
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approaches to the Non-IID problem (e.g., FedBN, PerFedAvg) and specialized
methods for CLIP adaptation in medical image classification (FACMIC). Our
FedTCA improves upon the previous SOTA FACMIC by margins ranging from
5.13% to 15.10% across various datasets and Non-IID setups. These improve-
ments are attributed to our enhancement of local cross-modal alignment through
flexible context-aware prompts and a twin cross-modal alignment strategy, which
effectively balances global and personalized knowledge to minimize learning bias.
Additionally, Figure 3 illustrates that our FedTCA facilitates the formation of
distinct, recognizable clusters, crucial for effective classification.

Table 1. Main results across different non-IID setups. Bold: the best.

Dataset BloodMNIST TissueMNIST OrganMNIST (2D) OrganMNIST (3D)

Method λ = 0.1 λ = 0.3 λ = 0.5 λ = 0.1 λ = 0.3 λ = 0.5 λ = 0.1 λ = 0.3 λ = 0.5 λ = 0.1 λ = 0.3 λ = 0.5

FedAvg 63.041.24 68.231.00 71.551.12 60.651.53 65.421.87 66.490.78 69.961.24 74.930.12 79.320.12 62.340.28 68.370.55 71.201.02

Local 84.471.43 86.811.20 87.020.55 73.420.95 77.031.32 79.241.43 81.840.45 87.930.53 91.061.28 88.730.44 91.240.96 92.310.32

FedBN 79.550.70 82.471.01 84.251.22 74.720.67 75.211.42 75.900.33 78.540.43 87.090.98 86.631.08 80.481.32 84.211.20 84.320.45

PerFedAvg 78.430.43 80.511.26 83.440.47 68.421.74 70.340.48 73.211.11 74.531.04 77.380.22 81.770.48 81.580.52 85.910.30 87.220.38

FedALA 81.011.50 83.630.43 85.991.04 74.990.42 76.871.26 79.451.65 81.980.44 88.252.21 92.310.84 83.420.04 87.241.96 87.991.48

FedCLIP 82.220.89 84.581.26 85.721.25 74.451.21 75.330.51 77.540.34 81.370.35 89.460.12 92.860.99 84.471.29 89.361.38 89.550.95

FACMIC 84.211.03 85.410.33 87.270.19 75.031.57 76.471.98 79.941.20 82.110.37 89.120.77 92.780.57 85.280.38 89.741.42 93.211.20

FedTCA (Ours) 90.210.22 90.790.18 94.331.20 83.990.21 88.020.41 90.260.13 92.420.26 95.770.09 98.470.37 95.670.27 97.670.23 97.990.21

Compare with Prompt Learning-based FL. We compared with Prompt
Learning-based FL for CLIP adaptation: PromptFL [13], PromptFL+FT [13],
pFedPrompt [12], and FedTPG [22], which replace original prompts with learn-
able vectors to facilitate adaptation. Table 2 demonstrates that our FedTCA,
significantly surpasses these benchmarks. The superiority of FedTCA stems from
employing LoRA in the CLIP encoder, which accelerates cross-domain general-
ization from natural to medical contexts at minimal cost (1.1% of total parame-
ters). Additionally, our generation of hard textual medical prompts, restyled for
learnable context-aware flexibility, offers more domain-specific insights compared
to methods that merely substitute textual prompts with learnable parameters.

Table 2. Results on Prompt Learning-based FL.

Dataset BloodMNIST TissueMNIST

Method λ = 0.1 λ = 0.3 λ = 0.5 λ = 0.1 λ = 0.3 λ = 0.5

PromptFL 80.010.29 81.241.126 83.151.00 73.970.49 75.010.39 75.260.34

PromptFL+FT 83.420.88 84.900.14 86.201.03 74.730.27 76.110.29 78.990.20

pFedPrompt 86.880.34 86.940.31 89.870.54 78.560.45 80.880.46 83.250.12

FedTPG 87.050.87 87.790.32 90.120.23 77.970.51 81.040.68 83.270.45

FedTCA (Ours) 90.210.22 90.790.18 94.331.20 83.990.21 88.020.41 90.260.13

Dataset OrganMNIST (2D) OrganMNIST (3D)

Method λ = 0.1 λ = 0.3 λ = 0.5 λ = 0.1 λ = 0.3 λ = 0.5
PromptFL 80.460.21 83.271.53 87.860.71 82.460.63 86.540.89 87.211.04

PromptFL+FT 82.861.12 86.000.31 88.241.73 84.531.12 88.620.42 89.990.04

pFedPrompt 87.260.12 90.020.42 94.800.55 86.640.65 90.212.03 92.631.42

FedTPG 88.040.24 90.340.54 94.960.37 87.000.23 90.070.55 92.790.82

FedTCA (Ours) 92.420.26 95.770.09 98.470.37 95.670.27 97.670.23 97.990.21

FedTCA (Ours) FACMIC

FedCLIP FedAvg

Fig. 3. t-SNE visual-
ization [19] on Organ-
MNIST (2D) - λ = 0.5.
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Ablation Studies. Table 3 demonstrates that our method outperforms orig-
inal similarity and classic OT alignment. This stems from addressing the limi-
tations of non-optimal transport, which tends to average the distances between
feature maps and cues, thereby underscoring the importance of optimal trans-
port in ensuring robust visual alignment. Additionally, the consistent superiority
of unbalanced over classical OT across all scenarios supports our method’s effec-
tiveness. In addition, we evaluate the performance under different action scope
of LoRA in Table 4. Unlike using LoRA on individual encoders or standard
fine-tuning, our strategy achieves superior cross-domain adaptation without sub-
stantially increasing costs, offering an optimal performance-efficiency trade-off.

Table 3. Ablation on Alignment. Results
based on BloodMNIST with λ = 0.5.

Ablation Case Alignment Blood Tissue

FedTCA-A Original Similarity 90.330.20 85.240.31

FedTCA-B Classical OT 91.260.42 87.930.16

FedTCA Our TCA 94.331.20 90.260.13

Table 4. Ablation on LoRA. Results
based on BloodMNIST with λ = 0.5.

Ablation Case Eimage Etext Acc. Train Params#

Standard FT ✘ ✘ 90.040.77 0.13 M
LoRA-B ✔ ✘ 92.360.40 0.79 M
LoRA-C ✘ ✔ 91.930.16 0.79 M

Original ✔ ✔ 94.331.20 1.46 M

Hyperparamerter Sensitivity. Tables 5, 6 and 7 assess the impact of three
critical hyperparameters in FedTCA. Experiments were conducted with λ = 0.5,
and the gray shading indicates our default setup. Key findings include: (1) Higher
r improves performance but also increase computational costs; the default set-
ting of r = 4 provides the optimal performance-cost trade-off. (2) Increasing the
regularization weight η leads to reduced performance as higher η enforce stricter
visual-text semantic alignment, thus restricting the advantages of a more diverse
distribution. (3) global and local prompt transport plans collaboratively align vi-
sion representations according to OT constraints. However, decreasing γ focuses
alignment on narrower regions of the object, thereby reducing performance.

Table 5. Impact of rank r in
LoRA. TP#: Trainable Param.

r Blood Tissue TP# (M)

4 94.331.20 90.260.13 1.46
8 94.650.17 90.490.25 2.78
32 94.990.41 90.520.44 10.75

Table 6. Impact of dif-
ferent η in Eq. 3.

η Blood Tissue

0.1 94.331.20 90.260.13

0.3 94.010.67 89.240.30

0.5 93.880.28 90.010.54

Table 7. Impact of dif-
ferent γ in our TCA.

γ Blood Tissue

1.0 94.331.20 90.260.13

0.9 94.250.10 88.560.09

0.7 92.730.65 89.990.26

Scaling Discussions Real-world medical FL is constrained by limited client
data [4, 6, 3, 24], hindering performance gains. FedTCA’s lightweight communi-
cation and LoRA enable scaling to boost performance without added overhead.
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4 Conclusion

This paper introduces FedTCA, a novel framework that enhances pretrained
VLMs through a Prompt Restyling strategy, replacing standard prompts with
learnable, domain-specific versions and incorporating a low-rank adaptation for
improved cross-domain knowledge transfer. Additionally, FedTCA features the
Twin Cross-modal Alignment (TCA), which addresses learning biases from non-
IID data by optimizing the balance between global and personalized knowledge
through conceptualizing knowledge transfer as an optimal transport problem,
enhancing local visual-text alignment. Evaluated extensively on real-world med-
ical imaging datasets, FedTCA has demonstrated superior effectiveness.
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