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Abstract. Accurate modeling of disease progression is essential for com-
prehending the heterogeneous neuropathologies such as Alzheimer’s Dis-
ease (AD). Traditional neuroimaging analysis often confound disease ef-
fects with normal aging, complicating the differential diagnosis. Recent
advancements in deep learning have catalyzed the development of dis-
entanglement techniques in Autoencoder networks, aiming to segregate
longitudinal changes attributable to aging from those due to disease-
specific alterations within the latent space. However, existing longitu-
dinal disentanglement methods usually model disease as a single axis
factor which ignores the complexity and heterogeneity of Alzheimer’s
Disease. In response to this issue, we propose a novel Surface-based
Multi-axis Disentanglement framework.This framework posits multiple
disease axes within the latent space, enhancing the model’s capacity to
encapsulate the multifaceted nature of AD, which includes various dis-
ease trajectories. To assign axes to data trajectories without explicit
ground truth labels, we implement a longitudinal contrastive loss lever-
aging self-supervision, thereby refining the separation of disease tra-
jectories. Evaluated on the Alzheimer’s Disease Neuroimaging Initia-
tive (ADNI) dataset (N=1321), our model demonstrates superior perfor-
mance in delineating between cognitively normal (CN), mild cognitive
impairment (MCI), and AD subjects,classification of stable MCI vs con-
verting MCI and Amyloid status, compared to the single-axis model.
This is further substantiated through an ablation study on the con-
trastive loss, underscoring the utility of our multi-axis approach in cap-
turing the complex progression patterns of AD. The code is available at:
https://github.com/jianweizhang17/MultiAxisDisentanglement.git

Keywords: Alzheimer’s Disease · Disentanglement · Contrastive Learn-
ing.

1 Introduction

Alzheimer’s Disease (AD) presents a significant challenge in neurodegenerative
disease research due to its complex pathology and the intertwined effects of
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normal aging and disease progression [1–3]. Traditional neuroimaging analysis
methods primarily rely on statistical modeling to identify disease-related pat-
terns [4]. However, these methods often assume specific data distributions that
may not accurately reflect the underlying biological variability. In contrast, deep
learning-based approaches can learn directly from data without strong distribu-
tional assumptions, demonstrating superior performance in tasks such as classi-
fication and regression. Despite their success, deep learning models suffer from
interpretability issues, making it difficult to understand the learned feature rep-
resentations and decision-making processes [5, 6].

To explicitly model the combined effects of aging and disease progression
while leveraging deep learning’s capacity to capture nonlinear relationships,
various disentanglement-based methods have been proposed [7–10]. These ap-
proaches typically encode neuroimaging data into a low-dimensional latent space
while enforcing human-interpretable structures to disentangle the effects of dis-
ease from other confounding factors. Recent studies have employed variational
autoencoders (VAEs) and generative adversarial networks (GANs) to structure
the latent space in meaningful ways for human interpretation, ensuring that vari-
ations due to aging and pathological changes are independently represented. For
instance, the method proposed in [8] utilizes a clustering-classifier alternating
strategy to encode atrophy patterns into discrete latent space clusters, yet it
does not explicitly model the longitudinal progression of atrophy. Similarly, the
model introduced in [7] represents aging and disease progression as orthogonal
vectors in latent space, offering a clear framework for measuring disease pro-
gression speed. However, given the significant heterogeneity in AD progression
patterns [11], assuming a single disease axis fails to capture the full spectrum of
disease variability.

To address this limitation, we propose a surface-based multi-axis model that
incorporates multiple disease progression axes to more accurately capture the
heterogeneity of AD. Additionally, to mitigate the challenge posed by the lack
of ground truth labels for different disease trajectories, we introduce a novel lon-
gitudinal contrastive loss, enabling self-supervised learning to effectively assign
data trajectories to their respective axes. By implementing a multi-axis repre-
sentation, our approach provides a more flexible and interpretable framework for
modeling disease progression in Alzheimer’s Disease. Through experiments, our
model exhibit better detection power in differentiating CN, MCI and AD data
and better accuracy in identifying stable MCI vs converting MCI and amyloid
status.

2 Method

2.1 Model Structure

Following [7], the main idea of longitudinal disentanglement is to leverage orthog-
onality where the directions of aging and disease are represented as orthogonal
axes in the latent space constructed by an encoder-decoder pair. The reasoning
is that normal subjects should have a longitudinal trajectory in the latent space
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Fig. 1. An illustration of the proposed model. (A) The general frame work of the
model. The 4 pairs of data, 1 pair is CN data, 3 are nonCN data, two of which are
from the same subject, are encoded into trajectory in latent space and disentangled by
alignment loss and contrastive loss. (B) The structure of the encoder-decoder built out
of graph convolution, batch norm and icosahedron pooling and up pooling.

that is parallel to aging axis since normal data should be free of disease effect
and disease subjects(Mild Cognitive impaired(MCI), Alzheimer’s Disease(AD))
should have only disease component after subtracting the aging component. To
adapt [7] to surface data, a graph convolution based encoder-decoder pair is
designed. Given a series of N longitudinal cortical thickness data x0...xN , the
model first encode the data into a latent vector space and then decode it to
reconstruct for data fidelity. The network consists of an encoder, a decoder, an
aging axis and N disease axes. The encoder and decoder each have 3 blocks of
convolution layer, batch normalization layer, leaky ReLU layer and pooling or
unpooling layer. To adapt the convolution from 3d volume to our cortical sur-
face data, the ChebShev convolution [12] is chosen due to its robust and efficient
properties. For pooling layer, we take advantage of the hierarchical structure of
the icosahedron. To down sample from the ith order ico-sphere to the (i-1)th
order, the max of the 1-ring neighborhood of every (i-1)th vertices is computed.
For up pooling, we take the transposed convolution strategy. To up sample from
the ith to (i+1)th ico-sphere, the additional vertices from the (i+1)th order is
zero padded and followed by a convolution layer. There are two fully connected
layers at the end of the encoder and start of the decoder for converting data into
and out of the latent space. The latent space is formulated as a C-dimensional
vector space.
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2.2 Loss and Representation

Given an encoder and a decoder, E and D, an input data x can be encoded
into a latent representation z and then reconstructed as x̂. Our model takes,
as input, four pairs of longitudinal data, (x1A, x1B), (x2A, x2B), (x3A, x3B),
(x4A, x4B), where A corresponds to the earlier time point and B to the later
time point. Each pair also has an associated time interval (∆t)i, i = 1, 2, 3, 4.
Pair 1 consists of cognitively normal (CN) data from the same subject. Pairs 2,
3, and 4 contain non-CN (MCI, AD) data, where pairs 2 and 3 come from the
same subject, while pair 4 belongs to a different subject. All data are encoded
into (z1A, z1B), (z2A, z2B), (z3A, z3B), (z4A, z4B). The difference value is defined
as ∆zi = ziB − ziA for i = 1, 2, 3, 4. The aging axis a and the set of N disease
axes {di}

N
i=1

are unit vectors in the latent space, with each di made orthogonal
to a by subtracting any aging component. We do not require the di vectors to
be mutually orthogonal, as we do not assume complete independence among
different disease trajectories. We employ a combination of existing losses from
prior work and our new contrastive loss. The first 5 losses are adapted from [7].

Reconstruction Loss Lrecon To ensure that the latent representation retains es-
sential information about the input, we apply a mean squared error (MSE)
reconstruction loss to all four pairs. The loss is computed for both time points
A and B:

Lrecon =
1

8

4
∑

i=1

(

‖xiA − x̂iA‖
2 + ‖xiB − x̂iB‖

2
)

. (1)

Aging Direction Loss Lda To enforce a consistent aging trajectory, we apply
the aging direction loss to the cognitively normal pair (pair 1). We encourage
alignment with the aging vector a via cosine similarity:

Lda = 1−
∆z1

||∆z1||2
∗ a. (2)

Disease Direction Loss Ldd To separate disease effects from aging, we first sub-
tract the aging components off the diseased pair 2 latent difference ∆z2, which
should then be parallel to one of the disease axis. In this case, we choose the
disease axis {di}

N
i=1

with the largest projection to be the target.

∆z2,disease = ∆z2 −
(

∆z2·a
‖z2‖2

)

a. (3)

Ldd = 1 − max
i

∆z2,disease · di

||∆z2,disease||2
, i = 1...N (4)

KL Loss Lkl The kl loss is applied pair 1 and pair 2 under the assumption is
that all subject should have a similar aging component distribution regardless
of disease or normal. This loss is to ensure that disease subjects and normal
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subjects have similar aging components. For ∆z1 and ∆z2, let αi =
∆zi·a
‖a‖ be its

projection onto a. Their KL divergence is:

Lkl = log
(

σ2

σ1

)

+
σ2

1 +
(

µ1 − µ2

)2

2σ2

2

− 0.5, (5)

where {µ1, σ1} and {µ2, σ2} are the mean and standard deviation of α1(CN) and
α2(nonCN), respectively.

Penalty Loss Lpen The penalty loss is to ensure that pair 1 (CN) subjects have
as little disease components as possible, which is defined as ratio of sum of dis-
ease components and aging component. Ideally, CN data should have no disease
components where this loss converges to 0.The loss is shown as below:

Lpen =

∑

i∈1...N ||∆z1 · di||

||∆z1 · a||2
(6)

Contrastive Loss Lcontrast We introduce a contrastive loss, inspired by SimCLR
[13], to structure disease progression in a self-supervised manner. It enforces
alignment between disease trajectories from the same subject while separating
them from those of different subjects. Specifically, we operate on three shifts:
∆zbase (pair 2), ∆zpos (pair 3), and ∆zneg (pair 4), where pair 2 and 3 from
the same subject should share the same disease axis and pair 4 from a different
subject should be pushed away from that same disease axis. We first subtract
their aging components along a and normalize them in unit vectors, then project
them onto {di}

N
i=1

to obtain qbase,qpos,qneg, where q is a length N vector of
cosine similarity to each of the N disease axis. Finally, we define:

Lcontrast = − log
exp

(

Sbase,pos

)

∑

j exp
(

Sbase,j

) , Sij =
qi · qj

τ
, (7)

where τ is the temperature parameter, and Sbase,pos measures the cosine sim-
ilarity between qbase and qpos which pull data from the same subject towards
the same axis and push data from different subjects away from the same axis.
The index j iterates through (base, pos, neg).

Total Loss Combining the above objectives, our final loss is a weighted sum:

Ltotal = (λrecon Lrecon + λda Lda + λdd Ldd + λkl Lkl

+ λpen Lpen + λcontrast Lcontrast)
(8)

In order to quantize disease severity for each group, we employ the same
representation as [7]. For each pair of longitudinal data ∆z, we compute the
aging and disease speed as equation below:

Vaging =
∆z · a

∆t
(9)
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Vdisease = max
i

∆z · di

∆t
(10)

∆t is the time interval between a pair of data. The aging and disease speed
quantize the longitudinal changes at a time point, however, the exact value of
the speed is not interpretable as it is a result of network optimization. The
relative comparison among different groups, on the other hand, can provide us
interpretability on the model’s behavior.

2.3 Implementation

The network is implemented through Pytorch 2.3 [14] and torch geometric [15].
The detail dimension sizes are shown in Figure 1 B. The network is trained at
learning rate of 0.0002 using Adam optimizer [16] for 90 epoches on a NVIDIA
A5000 GPU. The weights for reconstruction loss, da loss, dd loss, kl loss, penalty
loss and contrast loss are 4,1,1,1,1,1.

3 Experiments and Results

3.1 Dataset Processing

All experiments are conducted on the Alzheimer’s Disease Neuroimaging Initia-
tive(ADNI) dataset [17]. In total 5749 T1 weighted MRI scans from 1321 subjects
are selected. Each scan is assigned a diagnosis label of CN, MCI and AD based
on closest timestamp. Subjects with inconsistent longitudinal diagnosis, such as
AD subjects turning into MCI, are removed to reduce noise. For CN group, only
subjects that remain CN on all scans are kept. In MCI group, subjects are di-
vided into stable MCI(sMCI) and converting MCI(cMCI) where sMCI remains
MCI on all scans and cMCI has transition in diagnosis from MCI to AD. After
the screening, there are 495 CN, 446 sMCI, 148 cMCI and 232 AD. All the T1
MRI images are processed through FreeSurfer 6.0 to extract cortical thickness of
left and right hemisphere. [18] The thickness maps are registered by FreeSurfer
in the spherical domain and resampled to a standard 6th order icosahedron of
40962 vertices using FreeSurfer mris_surf2surf command. We use data from
both hemispheres which will be represented as a 40962 by 2 tensor as input to
the model.

3.2 Disentanglement Evaluation

In this experiment, we want to evaluate the impact of the number of disease axis
on aging and disease disentanglement, as well as the effect of the contrastive
loss. We follow the training scheme described in the method section and only
vary the number of disease axis. During training, the model is only provided CN
vs nonCN labels, therefore, we can rate the model’s performance based on their
ability to differentiate CN vs MCI and CN vs AD. After determining the optimal
axis number, we train the same model without the contrastive loss for ablation
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Fig. 2. Distribution of aging and disease speed among CN, MCI, AD, as well as sMCI
and cMCI subjects. Between each group, the aging speed is similar while disease varies
across different disease groups. The y axis is not shown and is different for each graph
since there is no intrinsic meaning in magnitude of aging or disease speed, only in
relative term.

study. The results are shown in Table 1. We compute the disease speed from
each model using equation 9 and 10 and compute the Cohen’d and p-value from
t-test as evaluation metric. The results show that the optimal number of disease
axis is 2, which has a higher cohen’s d and lower p-value in both CN vs MCI
and CN vs AD. The 2-axis model also shows superior performance than single
axis which demonstrate the necessity of multi-axis system for disentanglement.
Table 1 also shows that the 2 axis model with contrast loss performs better than
that without contrast loss which confirms that the contrast loss is an essential
addition for increased performance. Figure 2 shows the distribution of aging and
disease speed among differnt groups from the optimal multi axis model.

Model CN vs MCI Disease Speed CN vs AD Disease Speed

p-value ↓ Cohen’s d ↑ p-value ↓ Cohen’s d ↑

1 Axis 1.5551e-15 0.3079 1.3179e-32 0.5405

2 Axis 1.1517e-19 0.3431 1.7353e-36 0.6271

3 Axis 4.3966e-15 0.2965 2.2377e-27 0.5262

4 Axis 4.0447e-18 0.3273 1.0465e-34 0.6106

5 Axis 1.4278e-12 0.2590 5.6348e-14 0.4096

2 Axis w/o Contrast 3.6444e-13 0.2682 1.5783e-20 0.4971
Table 1. Disentanglement evaluation: This table shows the comparison of multi-
axis with different axis number and single axis in terms of the respective disease speed’s
ability to distinguish CN vs MCI and CN vs AD.
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Fig. 3. Correlation between the disease speed and 3 Cognitive Scores: ADAS, CDR
and MMSE. The correlation values are shown in the legend. The disease speeds from
our model and single axis model are used for comparison. All three scores show higher
correlation with our model than the single axis model.

3.3 Correlation with Cognitive Scores

We also performed correlation test of the disease speed with the 3 types of
cognitive score,Alzheimer’s Disease Assessment Scale(ADAS), Clinical Dementia
Rating(CDR) and Mini-Mental State Examination(MMSE). Going through all
the longitudinal pairs of data, we select the earlier data from all pair to ensure
that each scan only has 1 disease speed for consistency. Figure 3 shows the plot of
disease speed against 3 cognitive scores for both single axis and multi axis model,
which is the optimal model picked from the previous section. The correlation(r)
between disease speed and cognitive scores are shown on the graph. The results
show that multi-axis model consistently yields higher correlation than single axis
model, which indicates that the multi-axis has higher clinical relevance.

3.4 Classification on sMCI vs cMCI and Amyloid status

We also performed classification of sMCI vs cMCI and amyloid status defined
by [19]. As baseline comparison, we also trained a pure Autoencoder [20] model

Model sMCI vs cMCI balanced Accuracy ↑ Amyloid Status balanced Accuracy↑

AE [20] 0.5251 0.5183

Single axis 0.5690 0.5205

Ours 0.5948 0.5365

Table 2. Classification of sMCI vs cMCI and Amyloid status. The table shows
the classification accuracy on sMCI vs cMCI and Amyloid Status using latent code
from vanilla autoencoder, Single Axis and Multi-Axis(ours).

without regularization on the latent space. All the data are transformed into 4096
latent vector using the respective encoder. The classifier is a simple 3 layer multi-
layer perception with RELU as activation function and cross entropy as loss. The
classifiers are all trained for 20 epoches. To balance the dataset, we randomly
picked equal amount of sMCI data to match that of the cMCI data which has less
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number of data. For cMCI, we only pick time points before their transition to AD
to ensure no data leakage from post-conversion stages.For amyloid, we use the
entire dataset. Table 2 shows that resulting accuracy of all three models. Multi
axis model achieved the highest classification accuracy in both sMCI vs cMCI
and amyloid status, which indicates that multi-axis model can better represent
biological status in diseased subject.

4 Conclusion

In conclusion, this Surface-based Multi-axis Disentanglement framework success-
fully differentiates normal aging from AD-specific alterations by learning mul-
tiple disease axes in the latent space. Leveraging a longitudinal contrastive loss
for self-supervision allows the model to capture the multifaceted nature of AD,
including distinct subtypes and trajectories. Evaluation on the ADNI dataset
confirms that our model more accurately separates CN, MCI, and AD subjects
than single-axis models and robustly handles the complexity of AD progression.
These findings highlight the value of multi-axis disentanglement for characteriz-
ing heterogeneous neuropathologies and underscore the promise of this approach
for deeper insights into disease evolution and improved diagnostic stratification.
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