Convolutional Implicit Neural Representation of pathology whole-slide images (Supplementary Material)

Fig. 1. Multi-resolution Hash Grid Encoding: This method sets up L 2D grids across the domain, with each grid representing a different level of resolution. It encodes each grid point via a hash table of size T, where each index contains F trainable parameters (features), represented as a feature vector. For any given input coordinate (indicated by the red mark), a feature vector for each resolution level is computed by interpolating nearby grid features.

Table 1. Hyperparameters for multi-grid hash encoding

Parameter	Natural images	Pathology images (ours)
Number of $levels(L)$	16	24
Feature dimension (F)	2	2
Hash table $size(T)$	$[2^{14}, 2^{24}]$	$[2^{20}, 2^{28}]$
Coarsest resolution (N_{min})	16	4
Finest resolution (N_{max})	[512, 524288]	44890
Level $scale(b)$	[1.38, 2.0]	1.5

Fig. 2. Images reconstructed by each model. The first column presents the larger domain, while the subsequent columns feature zoomed-in views of specific local areas outlined by rectangular boxes in the first column images. The images in the first row are the original (ground-truth) images, while the images in the second and fourth row are the reconstructed images. The third and fifth row highlights the differences between the original and reconstructed images.