Supplementary Materials for Medical image segmentation via single-source domain generalization with random amplitude spectrum synthesis*

Qiang Qiao^{1,2} , Wenyu Wang^{1,2} , Meixia Qu^{1,2} , Kun Su^{1,2} , Bin Jiang^{1,2} , and Qiang Guo^{3,4} . (∞) , ¹ School of Mechanical, Electrical & Information Engineering, Shandong University, Weihai, China jiangbin@sdu.edu.cn ² Shenzhen Research Institute of Shandong University, Shenzhen, China ³ School of Computer Science and Technology, Shandong University of Finance and Economics, Jinan, China guoqiang@sdufe.edu.cn ⁴ Shandong Provincial Key Laboratory of Digital Media Technology, Jinan, China

Fig. 1. Visualisation of different hyperparameter settings in RASS.

Algorithm 1 RASS for 3D and 2D Medical Image

1: Input: x_s \triangleright 2D or 3D medical image 2: **RASS parameters:** α, β, γ \triangleright Set values 3: if $\dim(\boldsymbol{x_s}) == 3$ then \triangleright Process as 3D image $\mathcal{F}(\boldsymbol{x_s}) \leftarrow \text{FFT3D}(\boldsymbol{x_s})$ ▷ Obtain 3D Fourier spectrum 4: $\mathcal{A}(\boldsymbol{x_s}), \mathcal{P}(\boldsymbol{x_s}) \leftarrow \operatorname{Abs}(\mathcal{F}(\boldsymbol{x_s}), \operatorname{Ang}(\mathcal{F}(\boldsymbol{x_s})) \ \triangleright \operatorname{Amplitude} \text{ and phase spectrum}$ 5:6: $\sigma_{H \times W \times D} \leftarrow \text{Meshgrid}([-H/2, H/2], [-W/2, W/2], [-D/2, D/2])$ for $m \in [-H/2, H/2]$ do 7:for $n \in [-W/2, W/2]$ do 8: for $p \in [-D/2, D/2]$ do 9: $\sigma[m,n,p] \leftarrow \left(2\alpha \sqrt{\tfrac{m^2+n^2+p^2}{H^2+W^2+D^2}}\right)^{\gamma} + \beta$ \triangleright Calculate perturbation σ 10: $\boldsymbol{\delta}_{H \times W \times D} \sim \mathcal{N}(1, \boldsymbol{\sigma}_{H \times W \times D}^2)$ \triangleright Sample 11: $\mathcal{A}(\boldsymbol{x_s}) \leftarrow \mathrm{FFTShift}(\mathcal{A}(\boldsymbol{x_s}))$ 12: $\tilde{\mathcal{A}}(\boldsymbol{x_s}) \leftarrow \boldsymbol{\delta}_{H \times W \times D} \odot \mathcal{A}(\boldsymbol{x_s})$ 13:▷ Synthesize amplitude spectrum 14: $\tilde{\mathbf{x}} \leftarrow \text{Inverse-FFT3D}(\tilde{\mathcal{A}}(\boldsymbol{x_s}), \mathcal{P}(\boldsymbol{x_s}))$ \triangleright Recover the image 15: else if $\dim(\boldsymbol{x_s}) == 2$ then ▷ Process as 2D image $\mathcal{F}(\boldsymbol{x_s}) \leftarrow \mathrm{FFT2D}(\boldsymbol{x_s})$ 16: \triangleright Obtain 2D Fourier spectrum $\mathcal{A}(\boldsymbol{x_s}), \mathcal{P}(\boldsymbol{x_s}) \leftarrow \operatorname{Abs}(\mathcal{F}(\boldsymbol{x_s})), \operatorname{Ang}(\mathcal{F}(\boldsymbol{x_s})) \triangleright \operatorname{Amplitude} \text{ and phase spectrum}$ 17: $\sigma_{H \times W} \leftarrow \text{Meshgrid}(-H/2, H/2, -W/2, W/2)$ 18:for $m \in [-H/2, H/2]$ do 19:for $n \in [-W/2, W/2]$ do 20: $\sigma[m,n] \leftarrow \left(2\alpha \sqrt{\frac{m^2+n^2}{H^2+W^2}}\right)^{\gamma} + \beta$ \triangleright Calculate perturbation σ for 2D 21: $\delta_{H \times W} \sim \mathcal{N}(1, \sigma_{H \times W}^2)$ $\mathcal{A}(\boldsymbol{x}_s) \leftarrow \text{FFTShift}(\mathcal{A}(\boldsymbol{x}_s))$ 22: \triangleright Sample 23:24: $\tilde{\mathcal{A}}(\boldsymbol{x_s}) \leftarrow \boldsymbol{\delta}_{H imes W} \odot \mathcal{A}(\boldsymbol{x_s})$ \triangleright Synthesize amplitude spectrum $\tilde{\mathbf{x}} \leftarrow \text{Inverse-FFT2D}(\tilde{\mathcal{A}}(\boldsymbol{x_s}), \mathcal{P}(\boldsymbol{x_s}))$ 25: \triangleright Recover the image 26: end if

Table 1. Ablation study on different backbone.

Backbone	FeTA2021	IOSTAR	LES-AV
U-Net	$76.03. \pm 0.36$	$65.33_{\pm 0.19}$	$72.33_{\pm 0.17}$
MedNeXt	$76.34. \pm 0.19$	65.79 ± 0.21	72.83 ± 0.19
SegResNet	$76.56_{\pm 0.23}$	$65.86_{\pm 0.12}$	$72.88_{\pm 0.07}$

Table 2. Ablation study of RASS on the FeTA2021 dataset. γ is fixed to 2.0.

parameter	$\beta = 0.15$	$\beta = 0.25$	$\beta = 0.45$
$\alpha = 2.0$	$76.51_{\pm 0.31}$	$76.32_{\pm 0.32}$	$76.16_{\pm 0.31}$
$\alpha = 3.0$	76.52 ± 0.28	$76.56_{\pm 0.23}$	76.08 ± 0.26
$\alpha = 9.0$	75.52 ± 0.29	$75.67_{\pm 0.25}$	$75.31_{\pm 0.33}$

Fig. 2. Visualization of images after different mask sizes and numbers in RMS.