
1 Derivation of VP loss

Given two probability distributions p (y) and q (ŷ), the Kantorovich’s optimal
transport (OT) problem is given by [7]

L (p, q) = inf
Γ (y,ŷ)∈Π(p,q)

∫
c (y, ŷ) dΓ (y, ŷ) , (1)

where c(·, ·) is a nonnegative, measurable function, and Π(p, q) is the set of
all couplings such that their marginal probability distributions are p and q. If
c (y, ŷ) is also a lower semi-countinuous function, then by Kantorovich’s duality,
the OT problem in (1) is equivalent to the following

L (p, q) = sup
ϕ,ψ∈L1

∫
ϕ(y)dp(y)+

∫
ψ(ŷ)dq(ŷ) s.t. ϕ(y)+ψ(ŷ) ≤ c (y, ŷ) , (2)

where L1 denotes the set of functions such that their absolute value is Lebesgue
integrable, and the constraint is satisfied almost everywhere (according to p(y)
and q (ŷ)). From the constraint, we have an upper bound for ψ(·),

ψ(ŷ) ≤ inf
y∈S(p)

{c (y, ŷ)− ϕ(y)} = − sup
y∈S(p)

{ϕ(y)− c (y, ŷ)} (3)

where S(p) denotes the support of p. Note that if the right hand side of (3)
is in L1, then taking ψ(·) as its upper bound maximizes (2). Let p(y) be a
probability distribution supported only on the vertices of the simplex, with mass
probabilities indicated by the entries of Y ∈ ∆K−1, that is, p (y) =

∑K
k=1 Y

k ·
δ(y− ek). Replacing this expression in (3),

ψ(ŷ) ≤ − max
k∈{1,...,K}

{ϕ(ek)− c (ek, ŷ)} . (4)

If c(·, ·) is a metric, then it is non-negative and bounded in a bounded do-
main (∆K−1×∆K−1), hence Lebesgue integrable. Assuming ϕ(ek) <∞ for k =
[1, ...,K], each of theK functions within the maximum operator in (4) is Lebesgue
integrable, and thus the maximum itself is also L1.Hence, we can maximize (2)
by replacing ψ(·) by its (feasible) upper bound as follows,

L (p, q) = sup
Φ∈RK

⟨Φ, Y ⟩ − Eŷ∼q

{
max
k

{Φk − c (ek, ŷ)}
}
. (5)

where we have defined Φk = ϕ(ek) for k = 1, ...,K, ⟨·, ·⟩ denotes dot product,
and Eŷ∼q {·} is the expectation operator. Now, since we don’t have access to
the actual distribution q(·), we approximate the analytical expectation by the
empirical expectation from N samples, ŷi for i = 1, .., N ,

L (p, q) ≈ max
Φ∈RK

[
⟨Φ, Y ⟩ − 1

N
∥Φ1TN − C∥∞,1

]
, (6)

where we have written the problem in matrix form, with C ∈ RK×N a cost
matrix such that C(j, i) = c (ej , ŷi), and ∥A∥∞,1 denotes the sum of the infinity
norm (maximum) of the columns of the matrix A. One can write (6) as a linear
program (LP) by defining a new variable s ∈ RN which carries out the max
operation as

LP (Y, {ŷi}
N
i=1) = max

Φ∈RK ,s∈RN
⟨Φ, Y ⟩ − 1

N
⟨s,1N ⟩ s.t. Φ1TN − 1KsT ≤ C,

(7)
hence we have arrived to the dual form of discrete optimal transport, which can
be solved by standard LP solvers.



2 Architectural details

2.1 Deep Sparse Detector

Layer Kernel Size Output channels

Encoder
(EΘE )

Complex conv. + ReLU 1 8
Complex conv. + ReLU 3 16
Complex conv. + ReLU 5 32
Complex conv. + ReLU 5 32
Local spatial softmax (λ = 0.1) 17 32
Non-maximum suppression 17 32

Classification
head (CΘC )

Concatenate [real, imag] – 64
Linear Layer + ReLU – 128
Linear Layer + ReLU – 256
Linear Layer + ReLU – 512
Linear Layer + ReLU – 128
Linear Layer + ReLU – 8
Linear Layer + Softmax – 3

Reconstruction head
(RΘR)

Complex conv. + ReLU 5 32
Complex conv. + ReLU 5 16
Complex conv. + ReLU 3 1

Table 1: Architectural parameters of each component of DSD.

2.2 Architectures utilized as baselines for proportion prediction

Tables 2, 3, and 4 show the models utilized for direct proportion prediction,
heatmap estimation, and classification approaches, respectively. The oracle de-
tections for the classifier correspond to those originally learned by our model.

Components Kernel Size Output channels

ResNet-152
[8]

Conv2D 3 3
Adaptive Avg Pool 2D (224× 224) – 3
ResNet-152 – 2048
Linear Layer + ReLU – 3
Softmax – 3

Ours

Complex conv. + ReLU 1 8
Complex conv. + ReLU 3 16
Complex conv. + ReLU 5 32
Complex conv. + ReLU 5 32
Concatenate [real,imag] – 64
Global average pooling 512 64
Linear Layer + ReLU – 3
Softmax – 3

Table 2: Architectures used for direct regression

3 Implementation details

The model was trained in a two-stage process. First, the encoder and reconstruc-
tion head were trained with stochastic gradient descent (SGD) with learning rate
1e−5, batch size 7, for 10 epochs. Data augmentation was randomly performed
applying vertical or horizontal flip with probability 0.5 each (independently).



Components Kernel Size Output channels

C-FCRN [3]

Conv2D + ReLU + Maxpool (2× 2) 3 32
Conv2D + ReLU + Maxpool (2× 2) 3 64
Conv2D + ReLU + Maxpool (2× 2) 3 128
Conv2D + ReLU + Maxpool (2× 2) 3 512
Concatenate residual connection layer 3 – 640
Upsample (2× 2) + Conv2D + ReLU 2 128
Concatenate residual connection layer 2 – 192
Upsample (2× 2) + Conv2D + ReLU 2 64
Concatenate residual connection layer 1 – 96
Upsample (2× 2) + Conv2D + ReLU 2 32
Conv2D + ReLU 3 3
Global sum 512 3
Normalization – 3

Ours

Complex conv. + ReLU 1 8
Complex conv. + ReLU 3 16
Complex conv. + ReLU 5 32
Complex conv. + ReLU 5 32
Concatenate [real,imag] – 64
Conv2D + ReLU 3 4
Pixel-wise softmax + Global sum – 4
Normalization – 4

Table 3: Architectures used for heatmap regression

Components Kernel Size Output channels

Le Net [1]

Conv2D + ReLU 3 6
Avg pooling 2 6
Conv2D + ReLU 3 16
Linear Layer + ReLU – 120
Linear Layer + ReLU – 84
Linear Layer + Softmax – 3

Encoder
(EΘE )

Complex conv. + ReLU 1 8
Complex conv. + ReLU 3 16
Complex conv. + ReLU 5 32
Complex conv. + ReLU 5 32
Local spatial softmax (λ = 0.1) 9 32
Non-maximum suppression 9 32
Concatenate [real, imag] – 64
Linear Layer + ReLU – 32
Linear Layer + Softmax – 3

Table 4: Architectures used for classification using oracle detections

Once the encoder was trained with the reconstruction loss, its parameters were
frozen, and the detected objects and their features were used to train the clas-
sifier with Adam optimizer (learning rate 1e−3 and full batch for 1000 epochs).

4 Complement to representation learning methods

To evaluate the complementary nature of our method, we implement two archety-
pal methods of representation learning-based LLP and combine them with our
proposed loss. In particular,

– LLP-GAN [4]. While our classifier architecture serves as discriminator,
we implement a generator to map samples from a uniform distribution to



inputs of the classifier (feature vectors of size 64). We do so by three linear
layers followed by ReLU nonlinearities (dimensions 25 → 256 → 256 → 64).
We train the model adversarially as they proposed, but also evaluate the
performance obtained when the KL-div term used to train the discriminator
is replaced by our VP loss.

– Contrastive pretraining [9]. we followed the idea presented in [9] where
after contrastive pretraining, an entropic regularized KL-div (with parameter
λ = 0.01) is utilized for fine-tuning. They also propose to incorporate the
FLM approach described earlier in this section, so we present results with and
without this pseudo-labeling method. Given that the input to the classifier
are not images but features, it is unclear how to compute the contrastive
loss defined in [9] (e.g. what type of augmentations are appropriate). Thus,
we pretrain the model with the domain agnostic contrastive loss introduced
in [5] instead, with SGD, and learning rate 1e−4 for 1000 epochs.

Table 5 shows the results in synthetic and real data. In both cases the VP
loss (both variants) leads to improvements with respect to the original case,
thus confirming the complementary nature of the proposed VP loss
and representation learning methods.

Loss Accuracy (Syn.) Error (Real)

LLP-GAN
[4]

KL-div 33.33 8.13
VP-L2 35.94 6.38
VP-CE 47.54 6.23

Contrastive
pretraining
[9,5]

KL-div + entropy 18.11 52.78
KL-div + entropy + FLM 33.33 25.30

VP-L2 59.01 5.44
VP-CE 61.02 6.15

Table 5: Accuracy and mean absolute error in synthetic (Syn.) and real (Real)
data, respectively.

5 Detection results

We compare the detection performance of the proposed DSD to (1) Cellpose [6];
(2) a baseline approach (which applies local softmax and NMS directly on the
absolute value of the input image); and (3) CSC priors [10], previously proposed
for cell detection in lensless imaging. Detection metrics are reported in Table
6. For each method, a grid search over the hyperparameter space is performed
using the validation set, and the best models are reported. Cellpose is presented
as a generalist method that does not require retraining [6], yet in our case it
obtains the lowest performance across all detection metrics, which emphasizes
that lensless imaging can benefit from specialized models. DSD outperforms the
baseline and achieves the best precision. The CSC priors method obtains the best
recall and f1-score, however its performance comes at the expense of additional
data labeling and computational complexity (it uses holographic reconstruction
SPRT (·) as preprocessing [2], and retrieves one cell per iteration). In real data we



utilize WBC concentration as a proxy to evaluate the detection performance of
our method. The last row of 6 shows a significant correlation (ρ = 0.93) between
the number of cells detected by our model and the GT cell concentrations, and
same conclusions obtained from synthetic data hold for real data.

Method Input
Synthetic data Real data

Precision Recall F1-score Corr. coeff.
Cellpose [6] |H ∗ T | 0.89 0.64 0.74 ρ = 0.35
Baseline |H ∗ T | 0.92 0.88 0.90 ρ = 0.86

DSD (ours) H ∗ T 0.96 0.90 0.93 ρ = 0.93
CSC priors [10] SPRT (H) 0.94 0.95 0.94 ρ = 0.95

Table 6: Detection results. Mean detection metrics in synthetic data. Corr. coeff.
between GT concentration and predicted counts in real data.

References
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