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6 Detailed Dataset Information

We illustrate the class distribution across each dataset in Fig. [4] and Fig. [5]
highlighting the significant imbalance. Additionally, we present representative
samples from each class in Fig. [6]
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Fig. 4: Distribution of the classes in ISIC-2019 Dataset
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Fig. 5: Distribution of the classes in long-tailed NCT-CRC-HE-100K Dataset

7 Hyperparameter Analysis: Mix Ratio (m)

In Fig. EI, we compare the impact of the mix ratio (m) in Co-teaching VOG,
using the macro-averaged test F1l-score obtained after training with noisy labels
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Fig. 6: Some examples of images of the two datasets

in the initial LNL phase. These results indicate that this hyperparameter differs
across datasets and can vary with label noise (p).
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Fig. 7: Hyperparemeter study of mix ratio (m) in two datasets, when training
Co-teaching VOG at the first phase.

7.1 Base Model Initialization Strategy

There are two strategies to initialize the base model in the first phase before the
active label cleaning round begins: 1. either use the model trained on a noisy
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dataset using Co-teaching VOG (similar to [2]) or II. use the samples selected
by Co-teaching VOG as clean labels to train a new model using standard cross-
entropy loss. In Fig. (8] we compared these strategies and observed that separately
training the model using standard cross-entropy with only the samples identified
by Co-teaching VOG as clean labels improved the initial performance the most.
We argue that by segregating the noisy samples from an early stage, we reduce
the possibility of model distortion due to noisy labels. Therefore, we adopted
strategy I. for Co-teaching VOG, as reported in the Results section.

51

075 B e
L = ) 08 .
0.70 =
e g « 4
8 307 -
‘g 0.65 / ,,j, -
r r 'S06
3 3
2060 =
05
— CT_VOG (m = 0.2) + Entropy : Initialization strategy | — CT_VOG (m = 1) + Entropy : Initialization strategy |
0.55 CT_VOG (m = 0.2) + Entropy : Initialization strategy II od CT_VOG (m = 1) + Entropy: Initialization strategy I
0.50
0 500 1000 1500 2000 2500 3000 3500 4000 0 100 200 300 400 500 600
Annotation Budget (a/) Annotation Budget (a,)
(a) ISIC-2019 (p = 0.5) (b) LT NCT-CRC-HE-100K (p = 0.8)

Fig. 8: Comparison of test performance (macro-averaged F1-score) using two ini-
tialization strategies across two label noise rates (p) in two datasets. Initialization
strategy 1. refer to retraining the model from scratch using cross-entropy with
only the clean labels identified by Co-teaching VOG. Initialization strategy II.
refers to directly utilizing the model trained with Co-teaching VOG on noisy
labels.
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