12 Y. Wang et al.

In the supplementary materials, we present details of the three datasets and the disconnected components search algorithm.

Dataset	No. of train validation, test	Modality	Coronary Artery Disease	In-plane resolution (mm)	
ASCOS	28/4/8	3D CTA	Half with disease , half w/o disease	0.3-0.4	
ImageCAS	140/20/40	3D CTA	All with disease	0.29-0.43	
JHH	0/0/10	3D CTA	All with disease	0.35 - 0.40	

Table 3. Detailed properties for CTA Coronary datasets used in our study.

Algorithm 1	. Searching A	All Disconne	ection Poin	t Detection	for a	CTA volume
-------------	---------------	--------------	-------------	-------------	-------	------------

Require: INPUT: $V \in \mathbb{R}^{D \times H \times W}$ // 3D CTA input volume; $f(\cdot, \theta)$ // repairing model with learned parameters θ ; N // number of disconnected point Ensure: $P = \{P_1, ..., P_N\}$ // predicted disconnected point coordinates

- 1: Initialize: $H \leftarrow initializeHeatmap(H) \in \mathbb{R}^{N \times D \times H \times W}$, $H = \{H_1, ..., H_N\} //$ predicted disconnected point heatmaps
- 2: Noise filter // Excluding components smaller than 4 voxels
- 3: $CandPts \leftarrow FindCandPts(V) //$ Find candidate disconnected points (CandPts)
- 4: $CandPts \leftarrow removeLargestCC(CandPts), CandPts = \{c_1, ..., c_M\} // Remove largest connected component (removeLargestCC)$
- 5: for $c \in CandPts$ do
- 6: $P'_c \leftarrow random_sample(c) \in \mathbb{R}^3 / / \text{Randomly sample point from CandPts}$
- 7: $\hat{H}_t \leftarrow f(P_c', heta) \; // \; { t Generate heatmap for CandPts according to } P_c'$
- 8: $location = getLocation(P'_c) // Get the location in the heatmap grid$
- 9: $H[location] + = \hat{H}_t // \text{Aggregate heatmaps}$
- 10: end for
- 11: for n=1,...,N do
- 12: $P_n \leftarrow \arg \max(H_n) \in \mathbb{R}^3 // \text{Select highest intensity point}$
- 13: **end for**
- 14: return $P = \{P_1, ..., P_N\} // Return predicted disconnected points$