Supplementary Material of *HoG-Net*: Hierarchical Multi-Organ Graph Network for Head and Neck Cancer Recurrence Prediction from CT Images

Joseph Bae¹[0000-0002-9440-6655]</sup>, Saarthak Kapse¹[0000-0002-5426-4111]</sup>, Lei Zhou², Kartik Mani³, and Prateek Prasanna¹[0000-0002-3068-3573]</sup>

 $^1\,$ Department of Biomedical Informatics, Stony Brook University, NY 11794, USA

 $^2\,$ Department of Computer Science, Stony Brook University, NY 11794, USA

³ Department of Radiation Oncology, Stony Brook University, NY 11794, USA {joseph.bae, prateek.prasanna}@stonybrookmedicine.edu

1 Fully-Connected SuperGraph Comparison

Below are results comparing HoG-Net as described in the main text and a HoG-Net variant in which edges of SuperGraph are created between all OAR and GTV nodes. As can be observed, results from the variant are inferior.

	HN1	HNPET	RADCURE
Image Only	AUC	AUC	AUC
HoG-Net	0.662	0.649	0.721
<i>HoG-Net</i> (w/ fully-connected OARs)	0.643	0.617	0.681
Image+Clinical			
HoG-Net	0.809	0.759	0.807
<i>HoG-Net</i> (w/ fully-connected OARs)	0.806	0.689	0.802

 Table 1. Comparison of HoG-Net with Fully-Connected SuperGraph

2 HoG-Net Hyperparameters

Hyperparameter \downarrow	HoG-Net	HoG-Net+ Clinical
Learning Rate	4.5e-4	8e-4
Dropout	60%	60%
Optimizer	Adam	Adam
Epochs Trained	100	100

Table 2. Hyperparameters for HoG-Net Training

*All hyperaparameters chosen by performance on validation split.

2 J. Bae et al.

3 nnUNet for OAR Segmentation

Fig. 1. nnUNet Dice Scores. nnUNet models were evaluated on held out test sets following model training. Note these scores are provided only to demonstrate adequate model segmentation of OARs. OAR segmentation is not a contribution of this work, and performance on the binary classification task shown in the main paper is the desired outcome of this study.