Supplementary Material

Keypoint Matching for Instrument-Free 3D Registration in Video-based Surgical Navigation

Tânia Baptista^{1,2} (\boxtimes), Carolina Raposo^{1,2}, Miguel Marques², Michel Antunes^{1,2}, and Joao P. Barreto^{1,2}

¹ Institute of Systems and Robotics, University of Coimbra, Coimbra, Portugal tania.baptista@isr.uc.pt ² Perceive3D, Coimbra, Portugal

Fig. 1: Overlay of exemplary segmentation masks predicted by the automatic segmentation model on unseen Specimens 5 (top row) and 6 (bottom row).

Table 1: Description of the dataset used for segmenting arthroscopic images. Two approaches were used: an Overfitting model (OverfitM) tailored to each cadaver specimen or the General model (GenM). The latter was trained using predictions from the three highlighted Overfitting models.

		# Training	# Testing	Segment.
		Images	Images	Model
Specimen	1	97	1823	OverfitM
	2	163	3297	OverfitM
	3	728	4146	OverfitM
	4	271	2944	OverfitM
	7	85	2071	OverfitM
	5	$\frac{5}{3}$ 10 387	1114	GenM
	6		4095	

Table 2: Number of failed registrations (# Failed) for each specimen, method and number of pairs (# Pairs) used to perform the registration.

Fig. 2: Different knee specimens present significantly different levels of texture on bone and cartilage regions. While Specimen 1 presents considerable texture in the entire condyle and Specimen 3 also contains texture in the region of transition from bone to cartilage,

Specimens 4 and 6 are mostly untextured. The higher

the texture, the easier the matching process, and sub-

sequently the more accurate the 3D registration.

8				
		Methods	$\# \ {\rm Pairs}$	# Failed
		SIFT+NN	5	4
	3		10	1
		DISK+NN	5	3
en E		$_{\rm SP+LG}$	5	1
Ĩ		SIFT+NN	5	2
	4		10	2
2		LOFTR	5	1
	6	SIFT+NN	5	2
		DISK+NN	5	2
		RoMa	30	1

Table 3: Optimized parameters for each feature extraction and matching method tailored for arthroscopic images. Both SIFT and DISK use the NN matching method. Common parameters across all methods include: match threshold: 0.0001; keypoint threshold: 1e-6; and max num keypoints: 1e6.

SIFT	DISK	$\mathbf{SP}{+}\mathbf{LG}$
resize_max: 1600	resize_max: 1600	resize_max: 1024
peak_threshold: 1e-6	nms_window_size: 5	nms_dist: 2
first_octave: 0	detection _threshold: 0	width_confidence: 0.9999
patch size: 32		depth confidence: 0.80
mr_size: 12		filter_threshold: 0.05
Ν		
do_mutual_check: Th		
distance_threshold: N		
ratio threshold: None		

LoFTR	RoMa	$\mathbf{D}\mathbf{K}\mathbf{M}$
resize_max: 1024	resize_max: 1024	resize_max: 1024
weights: outdoor-ds	weights: outdoor	weights: outdoor

Fig. 3: Assessment of the registration accuracy in terms of tunnel placement for reconstructions obtained with the 6 different methods for 5, 10 and 30 pairs of images. The top row represents the median error in the entry point, in mm, and the bottom row represents the median error in tunnel direction, in degrees. White cells correspond to failure cases or errors larger than 4 mm or 8° . No semantic segmentation was considered for generating these results.

Fig. 4: Example of the alignment of 3D points reconstructed using the 6 considered methods with a 3D model obtained pre-operatively from CT image segmentation. This example represents points reconstructed from 30 image pairs combined with semantic segmentation of cartilage and bone of specimen 4. Each alignment is based on a randomly selected registration result.