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S.1 Additional information about Karolinska dataset

Refer to Table ST-1.

Table ST-1. Distribution of follow-up times and times until cancer diagnosis for ex-
aminations in the Karolinska dataset.

Number of exams with minimum n years Number of exams followed by a cancer
of screening followup diagnosis within n years

n=1 n=2 n=3 n=4 n=5 n=1 n=2 n=3 n=4 n=5

19328 16148 12873 9578 6530 517 681 1040 1181 1413

S.2 Image Processing

To ready images for the encoder, we resize them to 1664 by 2048 pixels and align
them to the left for uniformity. We then normalize them with mean and standard
deviation values defined for the image encoder, consistent across training, vali-
dation, and test sets. Lastly, we convert single-channel images to pseudo-RGB
by replicating them across three channels.

S.3 Details of Image Encoder and Image Aggregator

The CNN and image aggregator employed in our model are identical to those
described in Mirai, with the CNN being a ResNet-18 followed by a global max
pooling layer to produce 1D image embeddings. At its input, the image aggre-
gator enhances the embeddings by conditioning them on their specific views
(CC/MLO) and laterality (left/right) using learned non-parameterized posi-
tional embeddings. An affine transformation is applied to each image embedding
x as follows:

h = (Wscalee)⊙ x+ (Wshifte), (1)

where ⊙ is the dot-product, and e represents the unique 1D positional em-
bedding for each view and laterality, resulting in four distinct instances. The
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matrices Wscale and Wshift are two-dimensional and fixed across all views and
lateralities, ensuring uniform scaling and shifting of the embeddings. Following
this conditioning, the image aggregator uses a self-attention block to process the
embeddings and uses attention pooling implemented with a linear layer followed
by softmax activation to produce a singular visit representation.

S.4 Additional Experimental Details

During training, we used Adam with a learning rate of 1e− 3 and implemented
dropout with a probability of 0.25 at three points: before, within, and after the
visit aggregator. The aggregator itself consists of a single self-attention block.
For architectural fine-tuning and learning-related hyperparameter adjustments,
we conducted a grid search over three key aspects: the embedding dimension and
the number of attention heads within the aggregator, and the L2 regularization
applied to the model’s weights and biases. The values we explored were {128,
256, 512} for the embedding dimension, {1, 4, 8} for the number of heads, and
{1e-4, 1e-5, 1e-6} for the L2 rate.

S.5 Additional Results

Refer to Table ST-2.

Table ST-2. C-index and ROCAUC scores for LoMaR and other existing models,
excluding cancers confirmed within 6 months post-screening. Symbols ⋆ and † denote
evaluations with annual and biennial longitudinal data frequencies, respectively.

History Follow-up year ROCAUC
Model duration C-index 2-year 3-year 4-year 5-year

Image-Only 0 0.67 0.66 0.68 0.66 0.64
DL

Mirai 0 0.71 0.72 0.73 0.73 0.71

LoMaR 0 0.70 0.73 0.73 0.73 0.72
(Ours)

LoMaR 1⋆ 0.71 0.73 0.74 0.73 0.72
(Ours)

LoMaR 2⋆ 0.71 0.73 0.73 0.73 0.75
(Ours)

LoMaR 3⋆ 0.72 0.73 0.73 0.75 0.79
(Ours)

LoMaR 4⋆ 0.74 0.74 0.75 0.79 0.81
(Ours)

LoMaR 2† 0.71 0.73 0.73 0.73 0.75
(Ours)

LoMaR 4† 0.73 0.73 0.75 0.76 0.78
(Ours)


