Supplementary material: LIBR+: Improving Intraoperative Liver Registration by Learning the **Residual of Biomechanics-Based Deformable** Registration

Dingrong Wang¹, Soheil Azadvar¹, Jon Heiselman², Xiajun Jiang¹, Michael Miga², and Linwei Wang¹

> ¹ Rochester Institute of Technology, Rochester NY 14623, USA ² Vanderbilt University, Nashville TN, USA

(a) preoperative mesh of (b) LIBR-deformed mesh of (c) GT deformed mesh of liver model 1 without before liver model 1-L without be- liver model 1-L after left left forces applied.

fore left forces applied.

forces applied.

Fig. 1: Similar topology of preoperative (a), LIBR (b) and GT (c) deformed mesh after data coarsening. This gives a verified support of the assumption that a shared tetrahedron topology could be extracted from these three meshes after data coarsening.

(b) Surface Down-Sampling (c) Surface Reconstruction

Fig. 2: Pipeline of data coarsening process: (a) Surface Down-Sample, (b) Surface Down-Sampling, and (c) Surface Reconstruction. We take preoperative mesh of liver model 1 as an example.

Data Splits	Edge TRE				Inner TRE			
	wICP	LIBR	V2S	SR-GCN	wICP	LIBR	V2S	SR-GCN
Surface data only	14.066	11.666	11.640	4.405	11.869	10.412	/	4.412
Surface + 1 US Plane	14.066	9.660	11.248	4.389	11.869	8.758	/	4.402
Surface $+ 2$ US Planes	14.066	8.174	11.15	4.326	11.869	7.487	/	4.338
Surface $+ 3$ US Planes	14.066	7.225	11.05	4.324	11.869	6.674	/	4.345
Surface + 16 US Planes	14.066	4.851	10.994	3.292	11.869	4.570	/	3.341
All Data	14.066	7.441	11.072	3.289	11.869	6.859	/	3.322

Table 1: TRE separated by the category of intraopeartive measurements used.

Fig. 3: Ablative Component Comparison on different data splits: (B1) preoperative mesh as model's input. (B2) Concatenated preoperative and LIBR-deformed mesh as model's input. (B3) Bipartite Branch Integration on top of (B2). (B4) Sparse loss supervision on top of (B2). (Ours) All components.