Appendix Α

A.1 Non-Contrastive VicReg Loss

VICReg loss with *invariance*, *variance*, and *covariance* terms, is as follows:

$$\ell_{\text{contr}}(Z_t, Z_{t+\Delta t}) = \lambda_S \cdot S(Z_t, Z_{t+\Delta t}) + \lambda_V \cdot (V(Z_t) + V(Z_{t+\Delta t}))$$
(6)
+ $\lambda_C \cdot (C(Z_t) + C(Z_{t+\Delta t}))$
$$S(Z, Z') = \frac{1}{n} \sum_i ||z_i - z'_i||_2^2 \quad V(Z) = \frac{1}{d} \sum_{j=1}^d \max(0, 1 - \operatorname{std}(z^j, \epsilon))$$

$$C(Z) = \frac{1}{d} \sum_{i \neq j} [Cov(Z)]_{i,j}^2,$$

where $Cov(Z) = \frac{1}{n-1} \sum_{i=1}^n (z_i - \bar{z})(z_i - \bar{z})^T.$

 λ_S , λ_V , and λ_C are set to 15, 25, 5 to bring their magnitude in the same range.

A.2Derivation of Displacement Map Regularization Term

The pairwise RankNet [4] loss is based on cross-entropy loss for calculating the score-based ranking a pair of elements. Let f be a scoring function for the items x_i and x_j , such that their respective scores are $s_i = f(x_i)$ and $s_j = f(x_j)$. Concordantly the score difference is defined as $s_{ij} = s_i - s_j$. Then, the probability of ranking x_i greater than x_j is defined using the logistic function:

$$\mathcal{P}_{ij} = \frac{e^{s_{ij}}}{1 + e^{s_{ij}}} = \frac{1}{1 + e^{-s_{ij}}} \tag{7}$$

When ranking the items, there are 3 values for ground truth Y; 1 when x_i has higher rank than x_j , 0 when the relation is reversed, and $\frac{1}{2}$ when both items have the same rank. Accordingly, cross-entropy loss for correctly ranking the items is:

$$\mathcal{L}_{ce} = -Y \cdot \log(\mathcal{P}_{ij}) - (1 - Y) \cdot \log(1 - \mathcal{P}_{ij}) \tag{8}$$

In TC, s_i becomes $r_{t+\Delta t}$ and s_j becomes r_t , hence s_{ij} is the DM. For the crossentropy loss, we implemented s_{ij} as the norm of the DM. Also the ranking class is always 1 because the time difference is kept positive, thus the Eq. 8 becomes:

$$\mathcal{L}_{reg} = -1 \cdot \log(\mathcal{P}_{ij}) - (0) \cdot \log(1 - \mathcal{P}_{ij}) = -\log\left(\frac{1}{1 + e^{-s_{ij}}}\right)$$
(9)
= log(1 + e^{-s_{ij}}) = log(1 + exp(-||\rho_{\psi}(r_t, \Delta t)||_2))

11

12 Emre et al.

Table 2.	Contrastive	Augmentations	and	OCT	Details
----------	-------------	---------------	-----	-----	---------

Contrastive Transformations	Parameter		
Random Crop & Resize (percentage)	0.4 - 0.8		
Random Horizontal Flip (probability)	0.5		
Random Color Jittering (probability	0.8		
Random Gaussian Blur (kernel size)	21		
Random Solarize (threshold)	0.5		
Random Rotation (degrees)	± 5		
Random Translation (percentage)	± 0.05		
Input Time Difference	1-12 Months		
Normalization Mean & std	(0.202, 0.113)		
OCT Scanner	Cirrus OCT		
Resolution	$6 imes 6 imes 2 ext{ mm}^3$		
Projector MLP dimensions	4096-4096-4096		
Predictor ρ_{ψ} MLP dimensions	2049-2048		
GPU Used	Nvidia A100 80GB		

 Table 3. Computational Costs of Each Model

Model	Batch Update (Seconds)	# Trainable Parameters
VICReg	9.3	65.4M
ESSL	16.3	78.0M
AugSelf	14.2	78.0M
EquiMod	12.6	124.2M
TC	10.4	82.2M

Fig. 3. Distance rankings between the original representation r_0 and its propoageted prediction $r'_{t+\Delta t}$ for 9 consecutive months for 40 patients.