Knowledge-driven Subspace Fusion and Gradient Coordination for Multi-modal Learning

Yupei Zhang^{1*}, Xiaofei Wang^{2*}, Fangliangzi Meng³, Jin Tang⁴, Chao Li^{2,5,6}

¹ Department of Pathology, The University of Hong Kong
² Department of Clinical Neurosciences, University of Cambridge, UK
³ School of Life Sciences and Technology, Tongji University, China
⁴ Zhejiang Lab, China
⁵ School of Science and Engineering, University of Dundee, UK

⁶ Department of Applied Mathematics and Theoretical Physics, University of

Cambridge, UK

cl647@cam.ac.uk

Table 1. Implementation details of our proposed method.

Number of tumor-related genes	59
Number of TME-related genes	361
Batch size	8
Learning rate policy	\cos
Optimizer	Adam
Weight decay	0.001
Diagnosis training epoch	20
Diagnosis learning rate	2×10^{-3}
Grading training epoch	20
Grading learning rate	2×10^{-3}
Survival analysis training epochs	10
Survival analysis learning rate	2×10^{-4}

2 Y. Zhang et al.

Fig. S1. Top: ROCs of comparison and ablation study on glioma diagnosis task. Bottom: Hyper-parameter analysis of α in diagnosis and grading tasks.