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1 Supplementary Materials

Table 1. Details of different baseline approaches considered. The output layers of MCD
and DE to predictN ∼ (µ, σ2) for each of the reference locations in pose p ∈ RD×9.This
enables the use of Gaussian Negative Log-Likelihood as our loss function and serves to
establish a fair comparison with QAERTS. For EDL, we keep the default settings as
in [1] as this model already accounts for variances without any changes.

Approaches Description

Monte-Carlo Dropout (MCD) [2] Bayesian Neural Networks (BNNs) have con-
ventionally been used to formulate uncertainty
by defining probability distributions over the
model parameters, reducing overfitting. Other ap-
proaches aim to overcome the intractability of the
posterior distribution, such as MCD. MCD applies
Bernoulli dropout before each weighted layer to
approximate the aposteriori distribution via vari-
ational inference [2].

Deep Ensembles (DE) [4] This measures uncertainty by training multiple
DNNs independently and averaging their out-
puts at inference time, with considerable compu-
tational and time expense. Since Deep Ensembles
combine the predictions of M DNNs, the final
predictive distribution is assumed as a uniformly
weighted mixture of Gaussian distributions. Thus,
the ensemble mean is calculated by averaging the
output means of M models.

Deep Evidential Regression (EDL)
[1]

This is a deterministic method requiring only a
single-forward pass through a single model. This is
done by placing evidential priors over a Gaussian
likelihood function.
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Table 2. Mean results (± standard deviation) for quantitative metrics during inference
on the testing set across the implemented model during loss ablations study. MO indi-
cates a modification where the MVE model has five output heads, each predicting the
reference points of the landmark locations. MSE indicates training the model with L2
loss instead of Gaussian Negative Log-Likelihood. Learned Weights (LW) implies the
use of multi-task learning with learned homoscedastic uncertainty to weight the MSE
loss respective to each transformation instead of a joint loss [3]. K is the dimensionality
of the weights, ranging from a scalar value for each task, versus a vector containing
scalar values for each reference coordinate. DE+QAERTS offers a minor boost to DE.

QAERTS ED↓ PA↓ MSE↓ NCC↑ SSIM↑ Parameters

MSE 0.33 ± 0.27 0.31 ± 0.13 321.00 ± 300.41 0.30 ± 0.18 0.28 ± 0.17 ∼35.89M

MVE-MO 0.36 ± 0.28 0.44 ± 0.28 258.24 ± 283.88 0.56 ± 0.27 0.54 ± 0.30 ∼35.90M

LWK=1 0.38 ± 0.28 0.35 ± 0.15 395.10 ± 293.67 0.27 ± 0.16 0.17 ± 0.15 ∼35.90M

LWK=9 0.37 ± 0.27 0.29 ± 0.13 345.74 ± 289.90 0.41 ± 0.17 0.29 ± 0.15 ∼35.92M

DE+QAERTS 0.30 ± 0.23 0.39 ± 0.25 185.86 ± 230.10 0.75 ± 0.227 0.63 ± 0.25 ∼142M

Table 3. Rotational parameterizations and their descriptions.

Parameters Description

Quaternions The complete parameterization is described as translation in
Euclidean space along with a rotation ϕQ := q0 + iq1 + jq2 +
kq3, ϕQ ∈ R4, where q0, q1, q2 and q3 are real numbers, and i, j
and k are mutually orthogonal imaginary unit vectors respec-
tively. Quaternions are a continuous and smooth representation
of rotation laying on a unit manifold. To overcome the challenge
of there being two unique values for a single rotation, all quater-
nion derivations are constrained to a single hemisphere.

Axis-angles A translation in Euclidean space along with a rotation ϕA :=
αω, ϕA ∈ R3, where ω and α denote a normalized rotation
axis and a rotation angle respectively. Axis-angle representa-
tions have repetition at 2π radians.

Euler angles Described as translation in Euclidean space along with a rotation
ϕE := αβγ, ϕE ∈ R3, where α, β, and γ denote yaw (around Z
axis), pitch (around modified Y axis) and roll (around modified
X axis) respectively. Euler angles wrap around at 2π radians,
leading to giving multiple values representing the same angles,
indicating they are not injective, and suffer from gimbal lock.

Rotation matrices (SO(3)) described as translation in Euclidean space along with
a rotation about its three axes R := RzRyRx, R ∈ R3×3, where
each row in R corresponds to coordinates of the rotated axes re-
spectively. The 3× 3 rotation matrices are square matrices sub-
ject to orthogonality condition RTR = I and have det(R) = 1,
making it a member of the special orthogonal Lie group SO(3),
but an explicit loss is needed to enforce orthognality during
backpropagation.

Translation Translation displacement parameters are simply the x, y, and z
coordinates.

Scaling The scaling factor is a single scalar multiplied by the plane per
dimension (RH×W×D), where D = 3.


