1 Supplementary Materials

Table 1. Details of different baseline approaches considered. The output layers of MCD and DE to predict $\mathcal{N} \sim (\mu, \sigma^2)$ for each of the reference locations in pose $p \in \mathbb{R}^{D \times 9}$. This enables the use of Gaussian Negative Log-Likelihood as our loss function and serves to establish a fair comparison with *QAERTS*. For EDL, we keep the default settings as in [1] as this model already accounts for variances without any changes.

Approaches	Description
Monte-Carlo Dropout (MCD) [2]	Bayesian Neural Networks (BNNs) have con-
	ventionally been used to formulate uncertainty
	by defining probability distributions over the
	model parameters, reducing overfitting. Other ap-
	proaches aim to overcome the intractability of the
	posterior distribution, such as MCD. MCD applies
	Bernoulli dropout before each weighted layer to
	approximate the aposteriori distribution via vari-
	ational inference [2].
Deep Ensembles (DE) [4]	This measures uncertainty by training multiple
	DNNs independently and averaging their out-
	puts at inference time, with considerable compu-
	tational and time expense. Since Deep Ensembles
	combine the predictions of M DNNs, the final
	predictive distribution is assumed as a uniformly
	weighted mixture of Gaussian distributions. Thus,
	the ensemble mean is calculated by averaging the
	output means of M models.
Deep Evidential Regression (EDL)	This is a deterministic method requiring only a
[1]	single-forward pass through a single model. This is
	done by placing evidential priors over a Gaussian
	likelihood function.

References

- Amini, A., Schwarting, W., Soleimany, A., Rus, D.: Deep evidential regression. Advances in Neural Information Processing Systems 33, 14927–14937 (2020)
- Gal, Y., Ghahramani, Z.: Dropout as a bayesian approximation: Representing model uncertainty in deep learning. In: international conference on machine learning. pp. 1050–1059. PMLR (2016)
- Kendall, A., Gal, Y., Cipolla, R.: Multi-task learning using uncertainty to weigh losses for scene geometry and semantics. In: Proceedings of the IEEE conference on computer vision and pattern recognition. pp. 7482–7491 (2018)
- Lakshminarayanan, B., Pritzel, A., Blundell, C.: Simple and scalable predictive uncertainty estimation using deep ensembles. Advances in neural information processing systems **30** (2017)

Table 2. Mean results (\pm standard deviation) for quantitative metrics during inference on the testing set across the implemented model during loss ablations study. *MO* indicates a modification where the MVE model has five output heads, each predicting the reference points of the landmark locations. MSE indicates training the model with $\mathcal{L}2$ loss instead of Gaussian Negative Log-Likelihood. Learned Weights (LW) implies the use of multi-task learning with learned homoscedastic uncertainty to weight the MSE loss respective to each transformation instead of a joint loss [3]. *K* is the dimensionality of the weights, ranging from a scalar value for each task, versus a vector containing scalar values for each reference coordinate. DE+*QAERTS* offers a minor boost to DE.

QAERTS	ED↓	PA↓	MSE↓	$\mathrm{NCC}\uparrow$	$SSIM\uparrow$	Parameters
MSE	0.33 ± 0.27	0.31 ± 0.13	321.00 ± 300.41	0.30 ± 0.18	0.28 ± 0.17	$\sim 35.89 \mathrm{M}$
MVE-MO	0.36 ± 0.28	0.44 ± 0.28	258.24 ± 283.88	0.56 ± 0.27	0.54 ± 0.30	$\sim 35.90 \mathrm{M}$
$LW_{K=1}$	0.38 ± 0.28	0.35 ± 0.15	395.10 ± 293.67	0.27 ± 0.16	0.17 ± 0.15	$\sim 35.90 \mathrm{M}$
$LW_{K=9}$	0.37 ± 0.27	0.29 ± 0.13	345.74 ± 289.90	0.41 ± 0.17	0.29 ± 0.15	$\sim 35.92 \mathrm{M}$
DE+QAERTS	0.30 ± 0.23	0.39 ± 0.25	185.86 ± 230.10	0.75 ± 0.227	0.63 ± 0.25	$\sim 142 \mathrm{M}$

Parameters	Description
Quaternions	The complete parameterization is described as translation in
	Euclidean space along with a rotation $\phi_Q := q_0 + iq_1 + jq_2 +$
	$kq_3, \phi_Q \in \mathbb{R}^4$, where q_0, q_1, q_2 and q_3 are real numbers, and i, j
	and k are mutually orthogonal imaginary unit vectors respec-
	tively. Quaternions are a continuous and smooth representation
	of rotation laying on a unit manifold. To overcome the challenge
	of there being two unique values for a single rotation, all quater-
	nion derivations are constrained to a single hemisphere.
Axis-angles	A translation in Euclidean space along with a rotation $\phi_A :=$
	$\alpha\omega, \phi_A \in \mathbb{R}^3$, where ω and α denote a normalized rotation
	axis and a rotation angle respectively. Axis-angle representa-
	tions have repetition at 2π radians.
Euler angles	Described as translation in Euclidean space along with a rotation
	$\phi_E := \alpha \beta \gamma, \phi_E \in \mathbb{R}^3$, where α, β , and γ denote yaw (around Z)
	axis), $pitch$ (around modified Y axis) and $roll$ (around modified
	X axis) respectively. Euler angles wrap around at 2π radians,
	leading to giving multiple values representing the same angles,
	indicating they are not injective, and suffer from gimbal lock.
R otation matrices	(SO(3)) described as translation in Euclidean space along with
	a rotation about its three axes $R := R_z R_y R_x, R \in R^{3 \times 3}$, where
	each row in R corresponds to coordinates of the rotated axes re-
	spectively. The 3×3 rotation matrices are square matrices sub-
	ject to orthogonality condition $R^{I}R = I$ and have $det(R) = 1$,
	making it a member of the special orthogonal Lie group $SO(3)$,
	but an explicit loss is needed to enforce orthogonality during
	backpropagation.
Translation	Translation displacement parameters are simply the x, y , and z
	coordinates.
Scaling	The scaling factor is a single scalar multiplied by the plane per
	dimension $(R^{II \times VV \times D})$, where $D = 3$.

Table 3. Rotational parameterizations and their descriptions.