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1 Functional Gradients and Cortical Folding Patterns

In brief, for each subject, a functional connectivity matrix was calculated using
the correlation coefficient for all pairs between vertices (32,492 per hemisphere)
on HCP grayordinate mesh system. For each row of this “dense” functional
connectome matrix, the values of the top 10% of connections were retained,
whereas all others were zeroed. The negative values in the remaining connections
were zeroed as well. The similarity of the connectivity matrix A was ensured by
calculating the cosine distance between all pairs of rows, yielding a symmetric
affinity matrix L. On this matrix, diffusion embedding [1] that allows local and
long distance connections to be more effectively projected into a common space,
was employed to yield unitless components, also known as functional “gradients”.
The positions of nodes on these embedding axes encode the differences in nodes’
connectivity patterns. In this work, the number of gradients was set to 5. Results
of other numbers of gradients were compared. It is noted that each functional
gradient is associated with an eigen value that suggests its dominance. It has been
demonstrated that gradients decomposed from different subjects are consistent,
whereas their dominance could vary across subjects [2]|. Hence, the algorithm in [2]
used the group-mean matrix to yield the group-wise gradients, that were further
used as templates to identify the cross-subject correspondence of gradients from
individuals. The top-left panel of Figure 1a illustrates the aligned 5 functional
gradient maps from one subject. Surface mean curvature k£ was used to segment
surface to gyri (k>0) and sulci (k<0) (the right-top panel of Figure 1a).

2 Dataset & Preprocessing

Important imaging parameters are: T1-weighted MRI: TR=2400 ms, TE=2.14
ms, flip angle=8 deg, image matrix=260x311x260 and resolution=0.7x0.7x0.7
mm?3. Diffusion MRI: TR=5520 m.s, TE=89.5 ms, flip angle=78 deg, FOV=210x 180
mm?, matrix=168x 144, resolution=1.25x1.25x1.25 mm?, echo spacing=0.78
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ms; rsfMRI: TR=0.72 s, TE=33.1 ms, flip angle=52 deg, in-plane FOV=208x 180
mm?, matrix=90x 104, 220 mm FOV, 72 slices, 1200 time points, 2.0 mm isotropic
voxels, BW = 2290 Hz/Pzx. T1-weighted MRI was used to reconstruct a cortical
surface, since it provides more precise anatomical information due to its higher
spatial resolution. Preprocessing of T1-weighted MRI includes skull stripping,
tissue-segmentation and white matter surface reconstruction. The surfaces were
transferred to the grayordinate system, a common surface template, via cross-
subject registration to standard volume and surface spaces. It is noted that the
aligned surface of each subject was re-sampled such that vertices have cross-
subject correspondence. Preprocessing of fMRI signals includes: ICA-denoise,
spatial artifact /distortion removal. Within-subject cross-modal registration was
applied such that each grayordinate vertex was associated with a preprocessed
fMRI signal. More details of data acquisition and preprocessing are referred to
[3].

In order to make the above data available to the proposed model, we further
processed the data. Firstly, remeshing input data. SubdivNet requires meshes
with Loop subdivision sequence connectivity as input, the ’obj’ format mesh data
of HCP was remeshed to be availabled that has 131072 faces and 65538 points by
a method in [4]. Then, we used the nearest neighbor method to map the values
on the original surface to the new surface both on gradient and curv data. Next,
values on points are converted to values on faces by ’paraview’. Last, the data
above was normalized and written to ’json’ fomat file, every subject then has
a surface data and a value data includes input features (gradients) and labels
(binarized by curvs).
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