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Table 1. The ablation study of the enhancement loss LEn = L1 + LSSIM + LHF on
the Real Fundus dataset. The L1 loss serves as the fundamental pixel-level loss, the
LSSIM loss captures the human visual perception of image quality, and the LHF loss
extracts high-frequency information. It can be observed that all three losses contribute
to the enhancement results.

L1 LSSIM LHF PSNR SSIM

✓ 25.94 0.870
✓ ✓ 26.30 0.877
✓ ✓ 29.74 0.934
✓ ✓ ✓ 30.41 0.942

Table 2. The ablation study of the semantic guidance loss type on the Real Fundus
dataset. The results indicate that employing knowledge distillation with KL divergence
loss leads to improved feature alignment and superior performance.

Loss Function PSNR SSIM

L1 Loss 29.37 0.933
CMD Loss 29.10 0.927

KL divergence loss 30.41 0.942
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Table 3. Implementation Details.

Parameter Value

Optimizer Adam
GPU NVIDIA Quadro RTX 6000

Learning Rate 1e-3
Learning Rate Update Schedule Cosine Annealing

Batch Size 32
Total Epochs 2500

High-resolution Image Size 1280× 1280
Low-resolution Image Size 256× 256
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