
Supplementary Material Accelerated Multi-Contrast MRI Reconstruction via Frequency and Spatial Mutual Learning

Qi Chen¹, Xiaohan Xing^{2, \star}, Zhen Chen³, and Zhiwei Xiong¹

¹ University of Science and Technology of China
² Stanford University
³ Centre for Artificial Intelligence and Robotics (CAIR), HKISI-CAS

Fig. 1. Feature visualization. A feature analysis was conducted for the frequency and spatial features based on the FS-fusion module, which includes \hat{F}_{tf}^{i} , \hat{F}_{ts}^{i} , \hat{F}_{ts}^{i} . Two channels of these features were randomly selected from Stage1-6 for visualization. The results align with our motivation, whereby the frequency feature contains more global information, the spatial feature encompasses rich local features, and the final feature constitutes a comprehensive feature that is enhanced by both the frequency and spatial features.

^{*} Corresponding author: Xiaohan Xing (xhxing@stanford.edu)

2 Qi Chen et al.

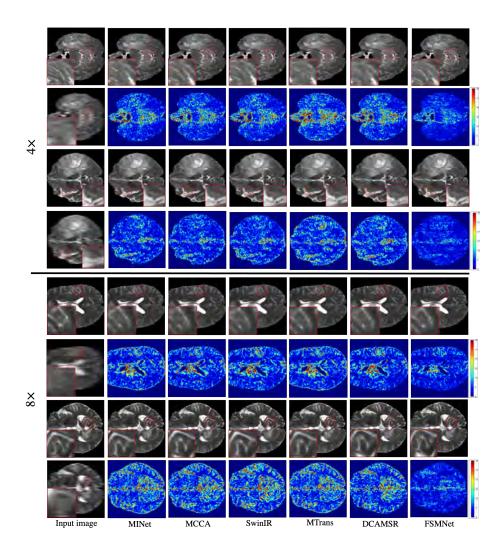


Fig. 2. More qualitative visualizations compared to different MCMR methods with $4\times$ and $8\times$ AF on the BraTS dataset.