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1 Proof of Proposed Loss Function

When all H hospitals exhibit identical training loss, the optimal solution for the
fairness term emerges. To demonstrate this, we minimize Lfair. Subsequently, we
elaborate on the mathematical representation of the fairness term. Further, we
discuss the enhancement in performance resulting from integrating the fairness
term into the local training loss, as described by Eq. 1.

Lfair =

H∑
h=1

(Fh(w)− F (w))
2

(1)

Lfair =

H∑
h=1

(F 2
h (w) + F (w)2 − 2Fh(w)F (w))

=
H∑

h=1

(F 2
h (w)− 2Fh(w)F (w)) +HF (w)2

(2)

To minimize the loss function, we computed the derivative with respect to Fj(w)
for a given hospital j ∈ 1, 2, · · · , H. Setting it to zero, as represented in Eq. 3,
enables us to identify the minima.

dLfair

dFj(w)
= 2Fj(w) = 0

Fj(w) = 0

(3)

The minimization of Lfair implies that Fh(w) = 0 holds true for all hospitals,
which is equivalent to the condition Fh(w) = F (w) for all h ∈ 1, 2, 3, ...,H.
This indicates that all M hospitals will converge to the same local loss, ensuring
fairness. We have shown our proposed loss function by plotting hospital 1’s loss
(F1) while fixing the total loss. The plot (refer to Fig. 1) confirms the quadratic
penalty effect - the loss grows with the divergence between F1 and the fair 0.5
value. Importantly, the plot also shows that the global minimum is precisely
when F1 = F2. The equal losses satisfy the condition for fairness we derived
mathematically in the proof. That clearly means all clients will converge to the
same local loss, satisfying fairness across all H hospitals.
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Fig. 1. The plot of the proposed loss function considering the 2 clients. It is clear from
the graph that the minimum of the loss function occurs when both clients have the
same loss value i.e. tending to zero


