Supplemental Materials

Qingshan Hou^{1,2}, Shuai Cheng^{1,2}, Peng Cao^{1,2,3,(⊠)}, Jinzhu Yang^{1,2,3,(⊠)}, Xiaoli Liu^{1,2}, Yih Chung Tham⁴, and Osmar R. Zaiane⁵

¹ Computer Science and Engineering, Northeastern University, Shenyang, China
² Key Laboratory of Intelligent Computing in Medical Image of Ministry of

Education, Northeastern University, Shenyang, China

³ National Frontiers Science Center for Industrial Intelligence and Systems

Optimization, Shenyang 110819, China

caopeng@mail.neu.edu.cn

yangjinzhu@cse.neu.edu.cn

⁴ Ophthalmology, Yong Loo Lin School of Medicine, National University of

Singapore, Singapore

⁵ Alberta Machine Intelligence Institute, University of Alberta, Edmonton, Canada

Table 1. Ablation study of the number of negatives on EyeQ dataset. We investigate the effect of the number of hard negatives K_t on multi-level contrastive learning. Specifically, we adjust the number δ of negatives in the similarity matrix by setting δ to different values, which in turn dictates the number of hard negatives used for CL and self-paced learning. CoMCL obtains the best performance on EyeQ when δ is set to 4,000. The main reason lies in: a larger δ implies more negatives, which can improve the performance of CL, but also introduces a significant long-tail effect in self-paced learning. In contrast, a lower δ value is beneficial for self-paced learning but may degrade the effect of CL.

Methods	Accuracy	Kappa
$\delta = 1,000$	0.864	0.853
$\delta = 2,000$	0.873	0.863
$\delta = 4,000$	0.884	0.872
$\delta = 8,000$	0.875	0.866
$\delta = 16,000$	0.868	0.859