1 Appendix - Figures

Fig. 1. Illustration of 2D 4th order Legendre, Hermite-Gaussian functions, and Chebyshev polynomials.

Fig. 2. Ablation study: Comparing the topological performance of our model trained using synthetic segmentations generated from various polynomials: Legendre, Hermite-Gaussian, and Chebyshev polynomials with order 4, 6, 8, and 10.

2 Appendix - Relative Mathematical Proof

Theorem 1 (StoneâA§Weierstrass theorem). Suppose X is a compact Hausdorff space and A is a subalgebra of $C(X, \mathbb{R})$ which contains a non-zero constant function. Then A is dense in $C(X, \mathbb{R})$ if and only if it separates points.

Corollary 1 (Approximation on tensor product of polynomials). For a compact domain $D \subset \mathbb{R}^n$ and $C(D)$, the space of continuous functions on D with supremum norm, tensor products of orthogonal polynomials on D form a dense subset in $C(D)$, enabling arbitrary close approximations of any $f \in C(D)$.

Proof. Let $D \subseteq \mathbb{R}^n$ be a compact domain with $C(D)$ representing the space of continuous functions on D endowed with the supremum norm. Define $\{P_k^{(i)}\}$ $\{k^{(i)}\}_{k\in\mathbb{N}}$ as orthogonal polynomials over each coordinate interval of D , for $i = 1, \ldots, n$. The algebra A, generated by $\bigotimes_{i=1}^{n} P_{k_i}^{(i)}$ $\mathbf{k}_i^{(i)}$, separates points and includes 1, meeting Stone-Weierstrass prerequisites.

For any $f \in C(D)$ and $\epsilon > 0$, there exists $g \in A$, $g = \sum c_{k_1,\dots,k_n} \bigotimes_{i=1}^n P_{k_i}^{(i)}$ $k_i^{(i)}$ such that $||f - g||_{\infty} < \epsilon$. Hence, tensor products of orthogonal polynomials are dense in $C(D)$, ensuring approximation of any $f \in C(D)$.

Proposition 1. The Chebyshev Polynomial $T_n(x)$ has following properties

- 1. n simple zeros in [-1, 1] at $\bar{x}_k = \cos\left(\frac{2k-1}{2n}\pi\right)$ for integers k
- 2. has bounded derivative $|T'_n(x)| \leq n^2$ for $|x| \leq 1$ and $|T'_n(\pm 1)| = n^2$
- 3. $T_n(x)$ and $T'_n(x)$ share no common zeros.
- 4. T_n has $n-1$ critical points when $n \geq 1$

Proof. 1. Roots can be verified by plugging into T_n 2. On [0, 1] let $x = \cos(\theta), T_n(x) = \cos(n\theta)$

$$
\frac{d}{dx}T_n(x) = \frac{\frac{d}{d\theta}T_n(\cos(\theta))}{\frac{d}{d\theta}\cos(\theta)} = \frac{n\sin(n\theta)}{\sin(\theta)}
$$
(1)

For $|x| \leq 1, |T'_n(x)| \leq n^2$, since $|\sin(n\theta)| \leq n|\sin(\theta)|$. For $x = \pm 1, |T'_n(\pm)| = n^2$, by L'HÃťpital rule in the limit: $\theta \to 0$ and $\theta \to \pi$ we find $|T'_n(\pm 1)| = n^2$. 3. By eq[.1](#page-1-0) $\sin(n\theta)$ shares no common zeros as $\cos(n\theta)$. 4. Can be checked by eq[.1.](#page-1-0)

Definition 1 (Morse Function). A map $f : M \to \mathbb{R}$ is a Morse function if its critical points are nondegenerate.

Proposition 2. Let $F : [0,1]^d \rightarrow [0,1]$ denote a d-dimensional probability density function, and consider a d-dimensional Chebyshev Polynomial basis $T_i(\boldsymbol{x}) =$ $T_{i_1}(x_1) \cdot T_{i_2}(x_2) \cdot \ldots \cdot T_{i_d}(x_d)$ for $\boldsymbol{x} = (x_1, \ldots, x_d)$. Suppose $G = m \cdot F$ represents the new density function after applying a normalized mask $m = \sum a_i T_i(\boldsymbol{x})$ on F. Then critical points x_G , satisfying $\nabla G(x_G) = 0$, are dependent by the original critical points \mathbf{x}_F , $\nabla F(\mathbf{x}_F) = 0$, according to the relationship:

$$
\nabla G = m \nabla F + F \nabla m = 0
$$

Also, the Hessian matrix of G at $c \in [0,1]^d$ is well-defined and is given by the relation with $H_c(F)$:

$$
H_c(G)^T = \nabla_c (\nabla_c G) = \nabla_c ((\nabla_c m) F + m (\nabla_c F))
$$

= $H_c(F)^T m(c) + \nabla_c F^T \nabla_c m + \nabla_c m^T \nabla_c F + F(c) H_c(m)^T$.

The index is given by $index(c) = # \{ \lambda_i < 0 \mid \lambda_i \in eigenvalues \ (H_c(G)^T) \}$