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In this supplementary material, we provide the detailed derivation of the
variational concept loss.

We denote Ck to be the k-th concept of the target concepts and ck to be
its label. To derive the variational concept loss LBeta, we assume that the con-
cept label ck follows Binomial distribution ck ∼ Bin(ck|pk), where pk represent
the probability supporting concept Ck from the network. pk follows the Beta
distribution pk ∼ B(αk, βk), which is also the conjugate prior of Binomial distri-
bution. Here, αk and βk are the evidence generated by the network. Therefore,
the marginal log likelihood p(ck|x) has an Evidence Lower BOund (ELBO),
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where the inequality is due to Jensen’s inequality and q(pk|x) is the variational
distribution B(αk, βk). Minimizing the negative ELBO, we obtain the variational
concept loss for the k-th concept:

Lk
Beta = Eq(pk|x) [− log p(ck|pk)] + KL(q(pk|x)||p(pk|x))
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The first term of LBeta can be regarded as the Bayes risk of binary cross-entropy
loss with respect to the variational distribution,

Eq(pk|x) [log p(ck|pk)]
=EB(αk,βk)[−ck log pk − (1− ck) log(1− pk)]

=− ckEB(αk,βk)[log pk]− (1− ck)EB(αk,βk)[log(1− pk)]

=− ck[ψ(αk)− ψ(αk + βk)]− (1− ck)[ψ(βk)− ψ(αk + βk)]

=ψ(αk + βk)− ckψ(αk)− (1− ck)ψ(βk).

The second term can be seen as the prior constraints for evidence. In order to
penalizing the evidence of incorrect prediction to 1, we set α̃k = ckαk + (1− ck)
and β̃k = ck + (1− ck)βk, and the second term becomes
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where Γ (·) and ψ(·) denotes gamma and digamma function respectively. When
ck = 1, we have α̃k = αk and β̃k = 1,
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Similarly, when ck = 0, we have α̃k = 1 and β̃k = βk,
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Adding the Bayes risk term and the KL term together, we obtain
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