Supplementary Material of Evidential Concept Embedding Models: Towards Reliable Concept Explanations for Skin Disease Diagnosis

Yibo Gao, Zheyao Gao, Xin Gao, Yuanye Liu, Bomin Wang, Xiahai Zhuang

> Fudan University <https://zmiclab.github.io>

In this supplementary material, we provide the detailed derivation of the variational concept loss.

We denote C_k to be the k-th concept of the target concepts and c_k to be its label. To derive the variational concept loss \mathcal{L}_{Beta} , we assume that the concept label c_k follows *Binomial* distribution $c_k \sim Bin(c_k|p_k)$, where p_k represent the probability supporting concept C_k from the network. p_k follows the Beta distribution $p_k \sim \mathcal{B}(\alpha_k, \beta_k)$, which is also the conjugate prior of Binomial distribution. Here, α_k and β_k are the evidence generated by the network. Therefore, the marginal log likelihood $p(c_k|\mathbf{x})$ has an Evidence Lower BOund (ELBO),

$$
\log p(c_k|\mathbf{x}) = \log \int p(c_k, p_k|\mathbf{x}) dp_k
$$

\n
$$
= \log \int q(p_k|\mathbf{x}) \frac{p(c_k, p_k|\mathbf{x})}{q(p_k|\mathbf{x})} dp_k
$$

\n
$$
= \log \mathbb{E}_{q(p_k|\mathbf{x})} \left[\frac{p(c_k, p_k|\mathbf{x})}{q(p_k|\mathbf{x})} \right]
$$

\n
$$
\geq \mathbb{E}_{q(p_k|\mathbf{x})} \left[\log \frac{p(c_k, p_k|\mathbf{x})}{q(p_k|\mathbf{x})} \right]
$$

\n
$$
= \mathbb{E}_{q(p_k|\mathbf{x})} [\log p(c_k|p_k)] - \text{KL}(q(p_k|\mathbf{x})||p(p_k|\mathbf{x})),
$$

where the inequality is due to Jensen's inequality and $q(p_k|\mathbf{x})$ is the variational distribution $\mathcal{B}(\alpha_k, \beta_k)$. Minimizing the negative ELBO, we obtain the variational concept loss for the k-th concept:

$$
\mathcal{L}_{Beta}^k = \mathbb{E}_{q(p_k|\mathbf{x})} \left[-\log p(c_k|p_k) \right] + \text{KL}(q(p_k|\mathbf{x})||p(p_k|\mathbf{x}))
$$

Xiahai Zhuang is the corresponding author.

2 Y. Gao et al.

The first term of \mathcal{L}_{Beta} can be regarded as the Bayes risk of binary cross-entropy loss with respect to the variational distribution,

$$
\mathbb{E}_{q(p_k|\mathbf{x})} [\log p(c_k|p_k)]
$$

=
$$
\mathbb{E}_{\mathcal{B}(\alpha_k,\beta_k)}[-c_k \log p_k - (1-c_k) \log(1-p_k)]
$$

=
$$
-c_k \mathbb{E}_{\mathcal{B}(\alpha_k,\beta_k)}[\log p_k] - (1-c_k) \mathbb{E}_{\mathcal{B}(\alpha_k,\beta_k)}[\log(1-p_k)]
$$

=
$$
-c_k[\psi(\alpha_k) - \psi(\alpha_k + \beta_k)] - (1-c_k)[\psi(\beta_k) - \psi(\alpha_k + \beta_k)]
$$

=
$$
\psi(\alpha_k + \beta_k) - c_k \psi(\alpha_k) - (1-c_k) \psi(\beta_k).
$$

The second term can be seen as the prior constraints for evidence. In order to penalizing the evidence of incorrect prediction to 1, we set $\tilde{\alpha}_k = c_k \alpha_k + (1 - c_k)$ and $\tilde{\beta}_k = c_k + (1 - c_k)\beta_k$, and the second term becomes

KL(
$$
\mathcal{B}(\tilde{\alpha}_k, \tilde{\beta}_k)
$$
|| $\mathcal{B}(1, 1)$)
\n= $\mathbb{E}_{\mathcal{B}(\tilde{\alpha}_k, \tilde{\beta}_k)}$ $\left[\log \frac{\Gamma(\tilde{\alpha}_k + \tilde{\beta}_k)}{\Gamma(\tilde{\alpha}_k)\Gamma(\tilde{\beta}_k)} + (\tilde{\alpha}_k - 1)p_k + (\tilde{\beta}_k - 1)(1 - p_k)\right]$
\n= $\log \frac{\Gamma(\tilde{\alpha}_k + \tilde{\beta}_k)}{\Gamma(\tilde{\alpha}_k)\Gamma(\tilde{\beta}_k)} + (\tilde{\alpha}_k - 1)[\psi(\tilde{\alpha}_k) - \psi(\tilde{\alpha}_k + \beta_k)]$
\n $+ (\tilde{\beta}_k - 1)[\psi(\tilde{\beta}_k) - \psi(\tilde{\alpha}_k + \tilde{\beta}_k)],$ (8)

where $\Gamma(\cdot)$ and $\psi(\cdot)$ denotes gamma and digamma function respectively. When $c_k = 1$, we have $\tilde{\alpha}_k = \alpha_k$ and $\tilde{\beta}_k = 1$,

$$
(*) = \log \frac{\Gamma(\alpha_k + 1)}{\Gamma(\alpha_k)} + (\alpha_k - 1)[\psi(\alpha_k) - \psi(\alpha_k + 1)] = \log \alpha_k + \frac{1 - \alpha_k}{\alpha_k}
$$

.

Similarly, when $c_k = 0$, we have $\tilde{\alpha}_k = 1$ and $\tilde{\beta}_k = \beta_k$,

$$
(*) = \log \frac{\Gamma(\beta_k + 1)}{\Gamma(\beta_k)} + (\beta_k - 1)[\psi(\beta_k) - \psi(\beta_k + 1)] = \log \beta_k + \frac{1 - \beta_k}{\beta_k}.
$$

Adding the Bayes risk term and the KL term together, we obtain

$$
\mathcal{L}_{Beta}^k = \psi(\alpha_k + \beta_k) + c_k \left[\log \beta_k + \frac{1 - \beta_k}{\beta_k} - \psi(\alpha_k) \right] + (1 - c_k) \left[\log \alpha_k + \frac{1 - \alpha_k}{\alpha_k} - \psi(\beta_k) \right].
$$