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In this supplementary material, we provide the detailed derivation of the
variational concept loss.

We denote C} to be the k-th concept of the target concepts and ¢ to be
its label. To derive the variational concept loss Lpgc¢q, we assume that the con-
cept label ¢, follows Binomial distribution ¢; ~ Bin(cg|pk), where py represent
the probability supporting concept C} from the network. p; follows the Beta
distribution py ~ B(ax, Bx), which is also the conjugate prior of Binomial distri-
bution. Here, ay and B are the evidence generated by the network. Therefore,
the marginal log likelihood p(c|x) has an Evidence Lower BOund (ELBO),

log p(cy|x) =log / p(ck, pr|x)dpr
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where the inequality is due to Jensen’s inequality and ¢(pg|x) is the variational
distribution B(ayg, Bk ). Minimizing the negative ELBO, we obtain the variational
concept loss for the k-th concept:

L% eta = Eqprx) [ log plex|pr)] + KL(g(pr )| [p(pk|%))
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The first term of Lp.¢, can be regarded as the Bayes risk of binary cross-entropy
loss with respect to the variational distribution,

Eq(pr|x) log p(ck|pk)]
=EB(ay,80) [—Ck logpr — (1 — c) log(1 — py)]
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=tp(ar + Br) — exb(aw) — (1 — cu)P(Br).

The second term can be seen as the prior constraints for evidence. In order to
penalizing the evidence of incorrect prediction to 1, we set &y = cpax + (1 — cx)
and B = ¢ + (1 — ¢x) Bk, and the second term becomes
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where I'(-) and 9(-) denotes gamma and digamma function respectively. When
¢, = 1, we have & = a and 8 =1,
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Similarly, when ¢, = 0, we have a3 = 1 and Br = B,
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Adding the Bayes risk term and the KL term together, we obtain
ko — Bk
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