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A Detailed proof of proposition 1

Given M models and K categories, denote ŷ(x) as the predicted category and
pm = [pm,1 pm,2 . . . pm,K ]⊺ ∈ RK as the output probability vector from the
m-th model. The estimated confidence of DE and DMR are defined as

Se(x) = max
k∈{1,2,...,K}

1

M

M∑
m=1

pm,k, (1)

Sr(x) =
1

M

M∑
m=1

pm,k∗ , (2)

respectively, where k∗ = argmaxk∈{1,2,...,K} pi,k is the predicted category of the
main model(i-th classifier). Define d as the difference between estimated and
expected confidence. Formally,

d(x) =

{
S(x), if x is misclassified
1− S(x), if x is not misclassified

(3)

Proof. The whole test dataset D can be divided into two cases as below,

1. When ŷ(x)r = ŷ(x)e, obviously, Sr = Se is established. So dr = de, that is,
E1(dr) = E1(de) always holds.
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2. When ŷ(x)r ̸= ŷ(x)e, based on Equation 1 and Equation 2, below inequality
always holds.

Se > Sr (4)

Otherwise, ŷ(x)r = ŷ(x)e holds, which is contradictory. And below inequality

always holds because
K∑
k

pm,k = 1.

Se + Sr ≤ 1 (5)

Now let’s divide it into 3 subcases. Let y(x) be the ground truth category.

(a) When both ŷ(x)e ̸= y(x) and ŷ(x)r ̸= y(x), we have de > dr always
holds. This can be derived from Equation 3 and Equation 4,

de − dr = |Se − 0| − |Sr − 0| = Se − Sr > 0. (6)

So Ea(de) > Ea(dr) holds. Let Na as the number of samples.
(b) When ŷ(x)e = y(x) but ŷ(x)r ̸= y(x), since S(x)e = max(pe), we have

min(Se) = minp max(pe) =
1
K . Since ŷr ̸= ŷe, there exists a model m∗,

pm∗,ŷr = max(pm∗) > pm∗,ŷe . (7)

Hence, max(pm∗,ŷe) =
1
2 and max(pm,ŷe) = 1, where m ̸= m∗. So

max(Se) =
(M − 1)max(pm,ŷe

) + max(pm∗,ŷe
)

M
=

2M − 1

2M
, (8)

which leads to Se ∈ [ 1K , 2M−1
2M ].

Similarly, since min(pm∗,ŷr
) =

1

K
and min(pm,ŷr

) = 0, where m ̸= m∗,

min(Sr) =
(M − 1)min(pm,ŷr

) + min(pm∗,ŷr
)

M
=

1

KM
. (9)

Additionally, from Equation 4 and Equation 5, we can get max(Sr) =
1
2 ,

which leads to Sr ∈ [ 1
KM , 1

2 ].
According to Equation 3, we have de ∈ [ 1

2M , K−1
K ], dr ∈ [ 1

KM , 1
2 ]. Now

assume d follows a truncated Gaussian distribution, the expectation can
be derived as below. Let Nb as the number of samples in this case.

Eb(de) = (
1

2M
+

K − 1

K
) / 2 = (K + 2MK − 2M) / 4KM

Eb(dr) = (
1

KM
+

1

2
) / 2 = (2 +KM) / 4KM

(c) When ŷ(x)e ̸= y(x) but ŷ(x)r = y(x), similar to Case 2b, we can derive
the expectations below. Let Nc as number of samples in this case.

Ec(de) = (2M + 2MK −K) / 4KM

Ec(dr) = (3KM − 2) / 4KM
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Now let’s combine Case 2b and 2c, we have

E2(de) =
Na · Ea(de) +Nb · Eb(de) +Nc · Ec(de)

Na +Nb +Nc

E2(dr) =
Na · Ea(dr) +Nb · Eb(dr) +Nc · Ec(dr)

Na +Nb +Nc

E2(de)− E2(dr) =
Na[Ea(de)− Ea(dr)] + (Nb −Nc)(K − 2)(M + 1)

4KM(Na +Nb +Nc)

Since Na ≥ 0,Ea(de) > Ea(dr),K ≥ 2,M ≥ 2, and Nb ≥ Nc according to
Assumption 1, E2(de)− E2(dr) ≥ 0 holds, which leads to E2(de) ≥ E2(dr).

To sum up Case 1 and Case 2, E(de) ≥ E(dr) always holds when Assumption 1
satisfied. And based on Lemma 1, proposition 1 is proved.


