1 Inference of the Optimization Based on the initial information bottleneck theory, Alemi et al. [19] use variational bounds and reparameterization to create a traceable optimization target: $$\mathcal{L}_{IB} = \frac{1}{N} \mathbb{E}_{z \sim p_{\theta}(z|x_n)} [-\log q(y_n|z)] + \beta \text{KL}[p(z|x_n), r(z)]$$ (1) where $p_{\theta}(z|x_n)$ is the posterior distribution parameterized by θ ; q(y|z) is a variational approximation of the true likelihood p(y|z) estimated by an encoder; r(z) is the prior distribution of z approximating the marginal p(z); $\mathrm{KL}[p(z|x_n), r(z)]$ stands for the Kullback–Leibler divergence between $p(z|x_n)$ and r(z); β is the Lagrange multiplier. The connectivity matrix of the brain network is undirected, real-valued and symmetric, which is diagonalizable and has N eigenvectors and eigenvalues. Thus, in our case, Eq. 1 can be rephrased as: $$\mathcal{L}_{IB} = \mathbb{E}_{\boldsymbol{A}_{re} \sim p_{\theta}(\boldsymbol{A}_{re}|\boldsymbol{A})}[-\log q(\boldsymbol{Y}|\boldsymbol{A}_{re})] + \beta \text{KL}[p(\boldsymbol{A}_{re}|\boldsymbol{A}), r(\boldsymbol{A}_{re})]$$ (2) The second term in the right-hand side (RHS) can be upper bounded as, $$KL[p(\boldsymbol{A}_{re}|\boldsymbol{A}), r(\boldsymbol{A}_{re})] \leq \mathbb{E}_{a_{ij} \sim p(\boldsymbol{A})}[KL[p(a_{re:ij}|a_{ij}), r(a_{re:ij})]]$$ (3) where a_{ij} and $a_{re;ij}$ are corresponding edges of \boldsymbol{A} and \boldsymbol{A}_{re} . Supposing that we are using Bernoulli distribution, we can rewrite $p(a_{re;ij}|a_{ij}) = (1 - p_{ij})\delta(a_{re;ij}) + p_{ij}\delta(a_{re;ij}|a_{ij})$, where p_{ij} refers to the probability that the edge a_{ij} will be preserved. As $\mathbf{A}_{re} = \mathbf{m} \odot \mathbf{A}$, the upper bound of Eq. (3) can be written as: $$KL[p(a_{re;ij}|a_{ij}), r(a_{re;ij})] = (1 - p_{ij}) \int \delta(a_{re;ij}) \log \frac{p(a_{re;ij}|a_{ij})}{r(a_{re;ij})} da_{re;ij}$$ $$+ p_{ij} \int \delta(a_{re;ij}|a_{ij}) \log \frac{p(a_{re;ij}|a_{ij})}{r(a_{re;ij})} da_{re;ij}$$ $$= (1 - p_{ij}) \log \frac{1 - p_{ij}}{1 - r(m_{ij})} + p_{ij} \log \frac{p_{ij}}{r(m_{ij})p(a_{ij})}$$ $$= KL[p(m_{ij}|a_{ij}), r(m_{ij})] - r(m_{ij}) \log p(a_{ij})$$ (4) There are two ways to push Eq. (4) forward. To make the optimization easy and quick, we suppose that all $r(m_{ij})$ to be the same, written as $r(\mathbf{m})$ and that $r(\mathbf{m})$ is independent to any of $p(a_{ij})$. The expectation of the right-hand side of Eq. (4) will be: $$\mathbb{E}[-r(m_{ij})\log p(a_{ij})] = r(\boldsymbol{m})H(\boldsymbol{A}) \tag{5}$$ The entropy $H(\mathbf{A})$ is irrelevent to the parameters to optimize. Thus, we consider only the expectation of the first part in the right-hand side of Eq. (4), $KL[p(\mathbf{m}|\mathbf{A}), r(\mathbf{m})]$. In this case, we get the optimization of D-CoRP: Efficient. Also, we can suppose that $r(m) \sim \mathcal{N}(\mu_m; \Sigma)$ and that μ_m has the same value as r(m) in all places, and suppose $p(m|A) \sim \mathcal{N}(\mathcal{P}; \Sigma)$. Given these, we can get Eq. (5) and the optimization target of D-CoRP, $\text{KL}[\mathcal{N}(\mathcal{P}; \Sigma), \mathcal{N}(\mu_m; \Sigma)]$. **Fig. 1. Model Structure.** This figure shows the overall structure of the model utilized in this study. (a) shows the pipeline without the graph pooling module. (b) shows the detailed components of a graph block, in which the module can be replaced by GCN, GAT, GIN or GraphSAGE. (c) shows the pipeline with the graph pooling module. | | | | FCP | | NKI-Rockland | | ADHD-Normal | | |---------------------------|-----------|--|---|---|---|---|---|--| | | Baseline | Plugin | MAE | RMSE | MAE | RMSE | MAE | RMSE | | Basic
GNN
Module | GCN | None | $15.27{\pm}1.47$ | $21.20{\pm}6.76$ | | 209.49 ± 127.55 | | | | | | D-CoRP (Single)
D-CoRP (Full) | $\frac{11.50 \pm 0.96}{11.46 \pm 1.47}$ | $\frac{16.66 \pm 0.98}{16.66 \pm 1.07}$ | 34.23 ± 1.33
20.81 ± 5.03 | 41.07 ± 3.17
32.94 ± 14.51 | | $\frac{10.68 \pm 2.01}{10.87 \pm 2.38}$ | | | GAT | None
D-CoRP (Single)
D-CoRP (Full) | $\begin{array}{c} 20.44 {\pm} 7.03 \\ \underline{12.96 {\pm} 2.07} \\ 13.58 {\pm} 1.22 \end{array}$ | 22.08 ± 6.87 20.41 ± 4.65 22.50 ± 5.31 | 23.36 ± 12.65
36.71 ± 1.93
15.43 ± 2.16 | 28.78 ± 12.44 41.53 ± 2.42 19.95 ± 1.33 | 3.17 ± 0.18
2.53 ± 0.41
3.83 ± 1.24 | 3.59 ± 0.24
2.96 ± 0.44
4.73 ± 1.93 | | | GIN | None
D-CoRP (Single)
D-CoRP (Full) | $\begin{array}{c} \underline{10.85 {\pm} 0.38} \\ \underline{11.76 {\pm} 1.08} \\ 12.58 {\pm} 1.02 \end{array}$ | $\begin{array}{c} \underline{14.76 \pm 1.71} \\ \underline{16.22 \pm 1.16} \\ 17.70 \pm 1.91 \end{array}$ | $\begin{array}{c} 17.43 \pm 4.12 \\ \underline{16.59 \pm 0.77} \\ 19.48 \pm 2.48 \end{array}$ | $\begin{array}{c} 20.28 \pm 3.68 \\ \underline{20.00 \pm 1.00} \\ 24.29 \pm 4.37 \end{array}$ | 5.92 ± 1.47
9.66 ± 2.01
5.92 ± 0.75 | 8.90 ± 3.38 15.93 ± 3.08 9.36 ± 1.94 | | | GraphSAGE | None
D-CoRP (Single)
D-CoRP (Full) | 15.72 ± 2.51 $\underline{11.89 \pm 0.94}$ 12.37 ± 1.03 | 30.24 ± 11.99
$\underline{16.45\pm1.01}$
17.79 ± 2.75 | $44.55{\pm}14.64 \\ \underline{16.25{\pm}0.97} \\ 20.17{\pm}1.62$ | 104.86 ± 60.86 $\underline{23.57 \pm 3.60}$ $\underline{29.34 \pm 6.11}$ | 4.42 ± 0.26
3.88 ± 1.10
3.46 ± 0.55 | 5.44 ± 0.32 4.99 ± 1.17 5.79 ± 1.39 | | Basic
Graph
Pooling | DiffPool | None
D-CoRP (Single)
D-CoRP (Full) | 12.10 ± 0.79
10.42 ± 0.14
11.76 ± 0.64 | $18.01 \pm 4.55 \\ 13.83 \pm 0.12 \\ 15.95 \pm 2.11$ | 26.96 ± 9.63
21.36 ± 1.17
17.41 ± 2.46 | 39.04 ± 19.44
33.46 ± 10.98
21.85 ± 3.19 | 4.06 ± 0.21 4.01 ± 0.28 3.27 ± 0.38 | 6.56 ± 0.86
6.47 ± 0.77
4.08 ± 0.37 | | | ТорК | None
D-CoRP (Single)
D-CoRP (Full) | $\begin{array}{c} 11.05 {\pm} 0.69 \\ 17.62 {\pm} 8.75 \\ \underline{10.96} {\pm} 0.79 \end{array}$ | 13.23±1.11
20.26±8.04
13.24±0.93 | 27.49 ± 9.42
17.09 ± 0.79
15.94 ± 3.11 | 37.61 ± 10.82 21.17 ± 0.72 21.41 ± 2.93 | 6.14 ± 3.62
3.38 ± 0.28
3.31 ± 0.37 | $\begin{array}{c} 6.70 {\pm} 3.42 \\ \underline{4.24 {\pm} 0.20} \\ 4.47 {\pm} 0.46 \end{array}$ | Table 1. Performance of D-CoRP: Efficient on Different Baselines.