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1 Supplementary Material

1.1 Multimodal Pre-training Methods

Medical vision-language pre-training enhances medical image analysis by learn-
ing domain-specific features from medical images paired with clinical descrip-
tions. By jointly encoding images and reports, these models better understand
visual and textual information, improving performance and interpretability. Typ-
ical methods improve image-text contrastive learning [3,7,18,34], align image
and text embeddings using semantic labels [31], or enhance image representa-
tion through masked image and language modeling [36]. Recent methods have
focused on radiology, especially chest X-rays [22,32,33], due to the abundance
of image-report pairs that help learn the relationship between visual features
and medical findings. However, this approach is less applicable in other medical
domains like ophthalmology, where retinal images have diverse modalities and
generally lack accompanying text information.

Unlike RETFound [37] and FLAIR [27], we propose a universal retinal FM
that processes multiple imaging modalities and integrates various expert anno-
tations into the image encoder. By leveraging multimodal images and domain
knowledge, this model enables comprehensive representations, facilitates multi-
modal reasoning, captures broader anatomical and physiological relationships,
and reduces development and maintenance costs.

1.2 Dataset Preparation

Pre-training Dataset. Based on FLAIR, we collected a large dataset (Tabel.
1) comprising 187,270 publicly accessible CFP and OCT images for the pre-
training of our foundation model and the experiments conducted. More details
can be found in FLAIR [27].

Fine-tuning Dataset. To conduct a comprehensive evaluation of the foun-
dation model, we collected 7 CFP datasets and 1 OCT dataset according to the
experimental setup defined by RETFound, and divided them following the data
division ratios provided by RETFound [37].

Task Specific Dataset. Based on the labels in the pre-training dataset,
we constructed a task-specific dataset for Diabetic Retinopathy classification,
which includes images from EYEPACS, PARAGUAY, OIA-DDR, and Deep-
DRiD, totaling 51,556 images. Similarly, a task-specific dataset for OCT disease
classification was developed based on the OCTCELL dataset.

1.3 Expert Knowledge Descriptions

For the domain knowledge descriptors related to retinal diseases based on CFP,
we referred to FLAIR [27] for guidance. Meanwhile, for the domain knowledge
descriptors concerning retinal diseases based on OCT, we utilized ChatGPT-4 to
summarize four distinct descriptions for the corresponding disease label names,
which were then employed as the domain knowledge descriptors (Tabel. 2).
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Table 1: Collected publicly available dataset for foundation model pre-training.
No. Name Count Labels

1 OCTCELL [16] 83,484 CNV, DME, DRUSEN, and NORMAL
2 EYEPACS[11] 35,126 noDR, mildDR, modDR, sevDR, prolDR
3 RFMid [25] 3,170 DR, ARMD, MH, DN, MYA, BRVO, TSLN, ERM, LS, MS CSR,

ODC, CRVO, TV, AH, ODP, ODE, ST, AION, PT, RT RS, CRS,
EX, RPEC, MHL, RP, CWS, CB, ODM, PRH, MNF, HR, CRAO,
TD, CME, PTCR, CF, VH, MCA VS, BRAO, PLQ, HPED, CL

4 EYENET [15] 15,709 Text
5 LAG [19] 4,854 G, noG
6 ODIR [1] 10,846 N, DR, G, CAT, ARMD, HR, MYA
7 PARAGUAY [4] 757 noDR, mildDR, modDR, sevDR, prolDR
8 STARE [14] 397 Text
9 ARIA [12] 143 N, ARMD, DR
10 AGAR300 [9] 28 DR, MA
11 FUND-OCT [13] 179 G, N, CME, neovARMD, geoARMD, acCSR, chCSR
12 DRIONS-DB [6] 110 noCAT, Dis
13 Drishti-GS1 [28] 101 N, G
14 E-ophta [8] 265 EX, MA
15 G1020 [2] 1,020 G, N
16 HRF [5] 45 N, G, DR, noisy
17 ORIGA [35] 650 G, noG
18 ROC [24] 100 MA
19 OIA-DDR [20] 13,673 noDR, mildDR, modDR, sevDR, prolDR, HE, hEX, sEX, MA
20 SYSU [21] 1,219 noDR, mildDR, modDR, sevDR, prolDR, HE, hEX, sEX
21 JICHI [29] 9,939 noDR, mildDR, modDR, sevDR, prolDR
22 CHAKSU [17] 284 G, noG
23 DR1-2 [26] 1,469 N, ReSD, hEX, DN, CWS, supHE, deepHE
24 ScarDat [30] 997 LS, noLS
25 ACRIMA [10] 705 G, noG
26 DeepDRiD [23] 2,000 noDR, mildDR, modDR, sevDR, prolDR

Total 187,270

1.4 Statistical Significance Analysis

Fig. 1 shows the statistically significant analysis of UrFound compared to the
second-best results in Table 1 of the paper, based on a t-test with a p-value
of 0.05. UrFound performs similarly to the second-best method on IDRID and
JSIEC, and significantly better on the other six datasets.

1.5 External Validation

We conducted external evaluations on the IDRID, APTOS, and Messidor datasets
and found that our UrFound model demonstrates strong generalizability, and
outperforms RETFound and FLAIR in most cases, with statistical significance
based on a t-test with a p-value of 0.05 (Fig. 2).
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Table 2: Expert Knowledge descriptions for OCT-based retinal diseases.
Category Domain Knowledge descriptor

CNV

1. “The OCT image reveals a network of new blood vessels beneath the retinal
pigment epithelium, indicative of Choroidal Neovascularization. These vessels are
irregular and often associated with age-related macular degeneration."
2. “There is noticeable distortion and elevation of the overlying retinal layers, which
is characteristic of the leakage and bleeding from these abnormal vessels."
3. “Pockets of fluid accumulation under the retina, known as subretinal fluid, are
evident, causing a dome-shaped elevation of the retina."
4. “Areas of hemorrhage and exudation are visible between the retinal layers and
beneath the retinal pigment epithelium, indicating active vascular leakage."

DME

1. “In Diabetic Macular Edema, the OCT scan shows a significant thickening of
the macula, particularly in the inner retinal layers, due to fluid accumulation. This
condition is a common complication of diabetic retinopathy."
2. “Multiple cystic spaces within the retinal layers are observed, filled with fluid,
giving a sponge-like appearance to the retina."
3. “Hyperreflective foci are seen below the retinal pigment epithelium, representing
hard exudates, which are residues of lipid deposits from leaking blood vessels."
4. “In advanced cases, disruption and irregularity of the retinal pigment epithelium
layer are noted, likely due to chronic edema and vascular leakage."

DRUSEN

1. “Drusen appear as small, round elevations beneath the retinal pigment epithe-
lium layer in OCT images. These are accumulations of extracellular material, com-
monly associated with age-related macular degeneration."
2. “The drusen vary in size and confluence, with larger and more numerous drusen
indicating a higher risk of progression to advanced macular degeneration."
3. “In cases of extensive drusen, there is noticeable distortion and thickening of
the overlying retinal pigment epithelium layer."
4. “Some drusen exhibit a central hyperreflective core with a surrounding hypore-
flective halo, suggesting varying stages of drusen evolution."

NORMAL

1. “The normal retina in OCT imaging presents a well-defined, multi-layered struc-
ture. Each layer exhibits its characteristic reflectivity, with clear demarcation be-
tween layers."
2. “The retinal pigment epithelium layer appears as a uniform, thin band adjacent
to the highly reflective Bruch’s membrane."
3. “The photoreceptor layer, including the cones and rods, is orderly and shows no
signs of fluid accumulation or structural distortion."
4. “The nerve fiber layer, ganglion cell layer, and inner and outer nuclear layers all
display normal thickness and reflectivity, with no signs of pathology or abnormal-
ity."
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Fig. 1: Analysis of Statistical Significance with the Second-Best Results in Table
1 of the Paper.

Fig. 2: Performance of RETFound, UrFound, and FLAIR on External Validation
with Statistical Analysis
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