Supplementary Material

Anglin Liu^{1,3}, Dengqiang Jia⁴, Kaicong Sun¹, Runqi Meng¹, Meixin Zhao⁵, Yongluo Jiang⁶, Zhijian Dong⁷, Yaozong Gao³⁽⁾, and Dinggang Shen^{1,2,3()}

¹ School of Biomedical Engineering & State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai, China {liual2022,dgshen}@shanghaitech.edu.cn

 $^{2}\,$ Shanghai Clinical Research and Trial Center, Shanghai, China

³ Shanghai United Imaging Intelligence Co., Ltd., Shanghai, China yaozong.gao@uii-ai.com

⁴ Hong Kong Centre for Cerebro-cardiovascular Health Engineering, Hong Kong, China

⁵ Department of Nuclear Medicine, Peking University Third Hospital, Beijing, China ⁶ Department of Nuclear Medicine, Sun Yat-sen University Cancer Center,

Guangzhou, China

⁷ Department of Nuclear Medicine, Xi'an Gaoxin Hospital, Xi'an, China

Table 1. We conduct a preliminary exploration of the number of Mamba layers in our LM-UNet using our in-house dataset. The best results are highlighted in **bold**. We find that a very high number of layers may cause performance degradation, which may be related to the training strategy.

Mamba layers	$\mathrm{DSC}\uparrow$		HD95 (mm) \downarrow	
	CT	PET	CT	PET
In-house Dataset				
6	$0.6815 {\pm} 0.1186$	$0.8273 {\pm} 0.0652$	52.9 ± 29.6	18.6 ± 7.8
12	$0.6998{\pm}0.1111$	$0.8492 {\pm} 0.0499$	$50.9{\pm}23.2$	20.3 ± 7.2
18	$0.6801{\pm}0.1259$	$0.8348 {\pm} 0.0658$	58.6 ± 25.1	$21.9 {\pm} 8.8$
24	$0.6431{\pm}0.1490$	$0.8126{\pm}0.0678$	55.7 ± 24.8	23.5 ± 7.2