
Supplementary

(a) Untrained (b) Scratch (c) KD (d) RKD (e) SCL-IKD

Fig. 1: The figures depict additional t-SNE plots for the APTOS dataset, illus-
trating different training techniques for the analysis of inter and intra-relations,
as detailed in Section 3.2.

(a) Less Imbalance (b) Original Data (c) Severe imbalance (d) Balanced data

Fig. 2: The figures illustrate the composition of the datasets synthesized from
HAM10000 for the analysis of class imbalance in Table 1.

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

ROC curves

MicroAVG - AUC: 0.97
MacroAVG - AUC: 0.94
No DR - AUC: 1.00
Mid - AUC: 0.94
Moderate - AUC: 0.93
Severe - AUC: 0.90
Proliferative DR - AUC: 0.90

(a) Scratch (M2)

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

ROC curves

MicroAVG - AUC: 0.98
MacroAVG - AUC: 0.96
No DR - AUC: 1.00
Mid - AUC: 0.95
Moderate - AUC: 0.95
Severe - AUC: 0.95
Proliferative DR - AUC: 0.95

(b) CRCKD

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

ROC curves

MicroAVG - AUC: 0.97
MacroAVG - AUC: 0.95
No DR - AUC: 1.00
Mid - AUC: 0.95
Moderate - AUC: 0.94
Severe - AUC: 0.93
Proliferative DR - AUC: 0.94

(c) SSD-KD

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

ROC curves

MicroAVG - AUC: 0.97
MacroAVG - AUC: 0.94
No DR - AUC: 1.00
Mid - AUC: 0.95
Moderate - AUC: 0.94
Severe - AUC: 0.87
Proliferative DR - AUC: 0.92

(d) UDCD

Fig. 3: The figures display the ROC curves for the APTOS dataset, using various
training techniques (only the most relevant and significant baselines) for KD
analysis, as described in Section 3.3.



2

Algorithm 1: UDCD Algorithm

Input: Deep Neural Network S, Similar Teacher architecture T , Teacher and
Student Memories Mt and Ms;

Parameters: Data in the form of batches x ∈ X, training epochs n,
hyperparameters α1, α2, γ1 and γ2;

// From X, we synthesize xs and xt using different perturbations or noise

Output: Ŷs; // Output from an efficient version of Student Model S

1 Load the (X, Y ) to Ms and Mt and (Xtest,Ytest); // (X, Y ): Train data,

(Xtest, Ytest): Testing data

2 Initialize weights of S ← ω, weights of T ← ω′; // ω and ω′ are chosen randomly

at initial stage

3 Apply perturbations (Augt(.) and Augs(.)) on mini-batch x and provide
inputs xs and xt to S and T respectively;

// Application of data augmentation on input

4 i == 0; // Initialize number of epochs

5 Function TRAIN DISTIL(Xt,Xs,Y, n, S, δ):
// use any optimization algorithm δ for optimizing the loss function , ·

represents the loss to be optimized for training the network

6 do
7 if n < warm up then
8 Y = Lwce · S(xs);

// Train S using weighted cross-entropy till it’s warm-up epoch

9 else
10 Update ω′ ← Exponential Moving Average(ω); // Update

teacher’s weight with EMA of student’s weight after warm up

11 Extract zs,zt and ps, pt from S and T ; // By application of MLP

layer and fully connected layers on the trained networks

12 Calculate anchors As(i) and At(i) with the help of representation
in Ms and Mt;

13 Extract Relations R(xs, As(i)) and R(xs, As(i)) using zs(x) and
zt(x) and Anchors

14 Extract Unit Vectors to calculate LCRA

15 Calculate Supervised Contrastive Losses using L
(s)
SCL and L

(t)
SCL;

16 Calculate Categorical Relational Alignment using LCRA;
17 Calculate Traditional Knowledge Distillation Loss LKL;
18 Calculate the teacher’s and Self Uncertainty using ψt

1 and psis1;
19 Add LSCL, LCRA and LKL with LWCE with the application of the

uncertainty-based weightage to get overall loss L;
20 Y = L · S(xs); // Train S using overall loss function

21 Update ω′ ← Exponential Moving Average(ω);
// Update teacher’s weight with EMA of student’s weight

22 Optimize L using δ;

23 i++;

24 while (i == n)
25 return L

26 S = TRAIN DISTIL (xt, xs, Y, n, S, δ); // Run the distillation training function

to train the model

27 Ŷs = S(Xtest); // Predict using trained model

28 Calculate Performance metrics using Ŷs and Ytest; // End of algorithm


