
Supplementary

(a) Untrained (b) Scratch (c) KD (d) RKD (e) SCL-IKD

Fig. 1: The figures depict additional t-SNE plots for the APTOS dataset, illus-
trating different training techniques for the analysis of inter and intra-relations,
as detailed in Section 3.2.

(a) Less Imbalance (b) Original Data (c) Severe imbalance (d) Balanced data

Fig. 2: The figures illustrate the composition of the datasets synthesized from
HAM10000 for the analysis of class imbalance in Table 1.
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(a) Scratch (M2)
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(b) CRCKD
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(c) SSD-KD
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(d) UDCD

Fig. 3: The figures display the ROC curves for the APTOS dataset, using various
training techniques (only the most relevant and significant baselines) for KD
analysis, as described in Section 3.3.
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Algorithm 1: UDCD Algorithm

Input: Deep Neural Network S, Similar Teacher architecture T , Teacher and
Student Memories Mt and Ms;

Parameters: Data in the form of batches x ∈ X, training epochs n,
hyperparameters α1, α2, γ1 and γ2;

// From X, we synthesize xs and xt using different perturbations or noise

Output: Ŷs; // Output from an efficient version of Student Model S

1 Load the (X, Y ) to Ms and Mt and (Xtest,Ytest); // (X, Y ): Train data,

(Xtest, Ytest): Testing data

2 Initialize weights of S ← ω, weights of T ← ω′; // ω and ω′ are chosen randomly

at initial stage

3 Apply perturbations (Augt(.) and Augs(.)) on mini-batch x and provide
inputs xs and xt to S and T respectively;

// Application of data augmentation on input

4 i == 0; // Initialize number of epochs

5 Function TRAIN DISTIL(Xt,Xs,Y, n, S, δ):
// use any optimization algorithm δ for optimizing the loss function , ·

represents the loss to be optimized for training the network

6 do
7 if n < warm up then
8 Y = Lwce · S(xs);

// Train S using weighted cross-entropy till it’s warm-up epoch

9 else
10 Update ω′ ← Exponential Moving Average(ω); // Update

teacher’s weight with EMA of student’s weight after warm up

11 Extract zs,zt and ps, pt from S and T ; // By application of MLP

layer and fully connected layers on the trained networks

12 Calculate anchors As(i) and At(i) with the help of representation
in Ms and Mt;

13 Extract Relations R(xs, As(i)) and R(xs, As(i)) using zs(x) and
zt(x) and Anchors

14 Extract Unit Vectors to calculate LCRA

15 Calculate Supervised Contrastive Losses using L
(s)
SCL and L

(t)
SCL;

16 Calculate Categorical Relational Alignment using LCRA;
17 Calculate Traditional Knowledge Distillation Loss LKL;
18 Calculate the teacher’s and Self Uncertainty using ψt

1 and psis1;
19 Add LSCL, LCRA and LKL with LWCE with the application of the

uncertainty-based weightage to get overall loss L;
20 Y = L · S(xs); // Train S using overall loss function

21 Update ω′ ← Exponential Moving Average(ω);
// Update teacher’s weight with EMA of student’s weight

22 Optimize L using δ;

23 i++;

24 while (i == n)
25 return L

26 S = TRAIN DISTIL (xt, xs, Y, n, S, δ); // Run the distillation training function

to train the model

27 Ŷs = S(Xtest); // Predict using trained model

28 Calculate Performance metrics using Ŷs and Ytest; // End of algorithm


