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1 Bi-Level Meta-Learning Algorithm

To achieve the joint domain generalization (DG) of explanations and diagnoses,
we design a bi-level meta-learning algorithm for training our GNN model with
XG regularization. Initially, we randomly initialize the model parameters θ and
gather fMRI data from multiple source-domain centers, i.e., S = {D1, ..., DK},
We then randomly partition S into inner-loop set Sinner and outer-loop set Souter.

In the inner-loop of the bi-level optimization, we start by attaching initial
values to our GNN model weights θ′k−1 = θk−1. we randomly sample a few
subsets of source-domain centers (say Sinner), on which the GNN model is trained
by simply Lce for classification, this optimization process can be expressed as:

θ′k = θ′k−1 − γ ×
∂Lce(Sinner; θ

′
k−1)

∂θ′k−1

= θk−1 − γ∇θk−1
Lce(Sinner; θk−1), (1)

where γ is step size of the Bi-Level Meta-Learning Algorithm.
In the outer-loop of the bi-level optimization, we further sample the remain-

ing source-domain centers (say Souter), on which the GNN model is trained by
minimizing a meta-learning loss Lmeta. We utilize the updated θ′k to compute
the loss function on Souter:

θk = θk−1 − γ × ∂Lmeta(Souter; θ
′
k)

∂θk−1
, (2)

Lmeta

∂θk−1
=

Lmeta

∂θ′k

∂θ′k
∂θk−1

, (3)

∂θ′k
∂θk−1

=
∂(θ′k−1 − γ × ∂Lce

∂θ′
k−1

)

∂θk−1
= 1− γ × ∂2Lce

∂θk−1
2 , (4)

θk = θk−1 − γ × ∂Lmeta

∂θ′k
(1− γ × ∂2Lce

∂θk−1
2 ). (5)

In order to prevent gradient explosion, higher-order fiducials ∂2Lce

∂θk−1
2 is ignored,

so the model parameters of the outer loop are updated with the equation:

θk = θk−1 − γ × ∂Lmeta

∂θ′k
= θk−1 − γ∇θ′

k
Lmeta(Souter; θ

′
k). (6)


