A Deep Learning Approach for Placing Magnetic Resonance Spectroscopy Voxels in Brain Tumors

 $Sangyoon\ Lee^{1,\,2\,[0009-0005-8825-5175]},\ Francesca\ Branzoli^{3\,[0000-0001-9792-0492]},\ Thanh\ Nguyen^4,$ $Ovidiu\ Andronesi^{5\,[0000-0002-7412-0641]},\ Alexander\ Lin^6,\ Roberto\ Liserre^{7\,[0000-0003-1536-0183]},\ Gerd\ Melkus^{4\,[000-0001-5387-8958]},\ Clark\ Chen^{8,\,9\,[0000-0001-9544-2570]},\ Małgorzata\ Marjańska^{1\,[0000-0002-4727-2447]},\ and\ Patrick\ J.\ Bolan^{1\,[0000-0002-4194-3975]}$

bola0035@umn.edu

Supplementary Table 1. The quantitative results of voxels predicted by the regression models for each fold in cross-validation. † Value is statistically significant (P < .05). One-way ANOVA for all p-value.

Fold	f_{tumor} (%)			Volume (mL)		
	$v_{\scriptscriptstyle M}$	$oldsymbol{\mathcal{V}}_{DL}$	p	$\nu_{\scriptscriptstyle M}$	$oldsymbol{\mathcal{V}}_{DL}$	p
1	95.9 ± 5.6	93.2 ± 12.5	0.17	13.5 ± 9.2	12.2 ± 2.6	0.32
2	93.1 ± 10.0	95.2 ± 6.81	0.24	11.5 ± 5.3	13.0 ± 5.4	0.18
3	89.2 ± 12.7	84.1 ± 19.1	0.12	12.5 ± 7.7	13.3 ± 3.6	0.55
4	93.3 ± 11.8	92.9 ± 13.4	0.89	14.5 ± 7.9	11.6 ± 2.8	0.01^{\dagger}
5	94.4 ± 17.3	92.7 ± 18.7	0.63	9.6 ± 6.6	10.1 ± 5.8	0.62

¹ Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, MN, USA

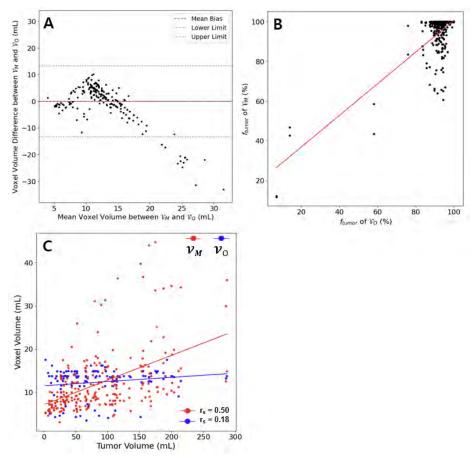
² Department of Radiation Oncology, University of Minnesota Medical School, MN, USA

³ Paris Brain Institute - ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne University, Paris, France

⁴ Department of Radiology, Radiation Oncology and Medical Physics, University of Ottawa, Ottawa, ON, Canada

⁵ Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA

⁶ Center for Clinical Spectroscopy, Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA


⁷ ASST Spedali Civili University Hospital, Brescia, Italy

⁸ Department of Neurosurgery, University of Minnesota, USA

⁹ Department of Neurosurgery, Brown University, USA

```
| Conv1): ResidualBlock(
| (conv1): Conv3d(1, 64, kernel_size-(3, 3, 3), stride-(1, 1, 1), padding-(1, 1, 1)) (conv2): Conv3d(64, 64, kernel_size-(3, 3, 3), stride-(1, 1, 1), padding-(1, 1, 1)) (residual_conv): Conv3d(1, 64, kernel_size-(1, 1, 1), stride-(1, 1, 1)) (conv2): ResidualBlock(
| (conv1): Conv3d(64, 128, kernel_size-(3, 3, 3), stride-(1, 1, 1), padding-(1, 1, 1)) (conv2): Conv3d(64, 128, kernel_size-(3, 3, 3), stride-(1, 1, 1), padding-(1, 1, 1)) (conv2): Conv3d(64, 128, kernel_size-(3, 3, 3), stride-(1, 1, 1), padding-(1, 1, 1)) (conv3): ResidualBlock(
| (conv1): Conv3d(256, 256, kernel_size-(3, 3, 3), stride-(1, 1, 1), padding-(1, 1, 1)) (conv3): Conv3d(256, 256, kernel_size-(3, 3, 3), stride-(1, 1, 1), padding-(1, 1, 1)) (conv3): Conv3d(256, 256, kernel_size-(3, 3, 3), stride-(1, 1, 1), padding-(1, 1, 1)) (conv3): Conv3d(256, 256, kernel_size-(3, 3, 3), stride-(1, 1, 1), padding-(1, 1, 1)) (conv3): Conv3d(256, 256, kernel_size-(3, 3, 3), stride-(1, 1, 1), padding-(1, 1, 1)) (conv3): Conv3d(256, 256, kernel_size-(3, 3, 3), stride-(1, 1, 1), padding-(1, 1, 1)) (conv3): Conv3d(256, 256, kernel_size-(3, 3, 3), stride-(1, 1, 1), padding-(1, 1, 1)) (conv3): Conv3d(256, 256, kernel_size-(3, 3, 3), stride-(1, 1, 1), padding-(1, 1, 1)) (conv3): Conv3d(256, 256, kernel_size-(3, 3, 3), stride-(1, 1, 1), padding-(1, 1, 1)) (conv3): Conv3d(256, 256, kernel_size-(3, 3, 3), stride-(1, 1, 1), padding-(1, 1, 1)) (conv3): Conv3d(256, 256, kernel_size-(3, 3, 3), stride-(1, 1, 1), padding-(1, 1, 1)) (conv3): Conv3d(256, 256, kernel_size-(3, 3, 3), stride-(1, 1, 1), padding-(1, 1, 1)) (conv3): Conv3d(256, 256, kernel_size-(3, 3, 3), stride-(1, 1, 1), padding-(1, 1, 1)) (conv3): Conv3d(256, 256, kernel_size-(3, 3, 3), stride-(1, 1, 1), padding-(1, 1, 1)) (conv3): Conv3d(256, 256, kernel_size-(3, 3, 3), stride-(1, 1, 1), padding-(1, 1, 1)) (conv3): Conv3d(256, 256, kernel_size-(3, 3, 3), stride-(1, 1, 1), padding-(1, 1, 1)) (conv3d(256, 256, kernel_size-(3, 2, 3, 3), stride-(1, 1, 1), padding-(1, 1, 1)) (conv3d(256, 256
```

Supplementary Fig. 1. Voxel localization regression model architecture.

Supplementary Fig. 2. Correlation plot between voxel placement characteristics of tumor volume, f_{tumor} , and V_{tumor} between \mathcal{V}_{M} and \mathcal{V}_{O} . The grid-like pattern in (A) is due to the discrete search optimization of Ref [8].