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Supplementary Materials

A Basis sampling strategies

As discussed in Sec. 3.1 in the main paper, we need weights bases for the sam-
pling. There are different ways to sample the basis weights for weights generation.
For instance, the number of group G can be chosen as large as N . We do not
take every single weight vector, but a group of them, from A as the basis. This
is because generating the weights group-wisely could better utilize the spatial
continuity of the inputs. The number of basis weights for the generation would
affect the flexibility of the generated weights. Using more basis would give greater
freedom but may also hurt the efficiency of the method. Here, we use two bases
for the best trade-off.

B Architecture and performance

MedBlock illustration. In classification, the input image resolution is often
set to 224 × 224. Suppose the patch size is 16 × 16. The number of token, i.e.,
the spatial size, should be 14×14 = 196. Such a large value will result in a large
number of weight basis, consuming huge amount of memory. To mitigate this
issue, we adopt a similar strategy to ViP [5] and encode the spatial information
along the height and width dimension separately with the permutation strategy.
Different from ViP, we further decompose the layer into two consecutive layers
with a bottleneck structure. A diagrammatic illustration of our building block
can be found in Fig. 2 in the main paper which contains two components for
spatial information mixing and channel mixing, respectively. The channel mixing
component is a normal MLP which consists of two fully connected layers with
a non-linear activation. For spatial information mixing, we use two branches to
encode the information along the height and width dimension, respectively, each
of which has two AdaFCs. Suppose the input tensor has the shape of C × S′.
Without the bottleneck structure, to guarantee the spatial size of the output is
still S′, our basis sampling strategy should be applied to both the input and
output dimensions of the weight matrix. This means the weight matrix would
have a shape of S′×S′ and the computation cost will be proportional to C ·S′ ·S′,
which is quadratic in S′.
Performance of MedMLP on natural image dataset. The results can be
found in Tab. A.

C Dataset Description
PACD is a spectrum of disease that is characterized in common by an obstruc-
tion to aqueous humor outflow. It may culminate in developing a more visually
debilitating form of glaucomatous optic neuropathy. We randomly split a subset
of data from the Singapore Chinese Eye Study (SCES), the Singapore Indian
Chinese Cohort (ICC), and the Iris Surface Features (ISF), in total 4715 eyes
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Networks Param.FLOPsImageNet (%)Real (%)

ViP (scaled) [5] 6.7M 1.5B 70.3 78.4
MedMLP-B0 (Ours) 4.9M 0.6B 74.3 81.6

gMLP-tiny16 6.0M 2.7B 76.4 –
MedMLP-B1 (Ours) 8.4M 1.0B 76.2 83.0

Mixer-B/16 [7] 59.0M 11.6B 76.4 82.0
ResMLP-S12 [8] 16.0M 0.8B 76.2 83.5
MedMLP-B2 (Ours) 12.7M 2.1B 78.3 84.8

Table A. Top-1 accuracy comparison of our
MedMLP with the recent MLP-like models on
ImageNet [4] and ImageNet Real [2] (‘Real’). All
the models are trained without external data.

Stage Operator Resolution#Filters#Layers
i Ai Hi × Wi Ci Li

1 PatchEmbed 4x4 224 × 224 32 1
2 AdaFC, e4, h1 56 × 56 42 2
3 AdaFC, e2, h2 28 × 28 56 4
4 AdaFC, e3, h4 14 × 14 96 4
5 AdaFC, e6, h8 14 × 14 112 4
6 AdaFC, e6, h32 7 × 7 224 4
7 Head & LayerNorm 1 × 1 1000 1

Table B. Architecture definition of
AdaMLP-B0 model. We use ‘h’ to
denote the number of heads and ‘e’
the expansion ratio in channel mixing
MLP.

into training, validation, and testing dataset following a ratio of 7:1:2. The other
iris fundus photo dataset used for external validation is sub-set of the Singa-
pore Indian Eye Study (SINDI) which contains 250 eyes. With MedMLP, the
average accuracy over all datasets is improved from 66% to 79.2%, compared to
ResNet50. This shows the superiority on generalization capability of MedMLP.

C.1 Implementation details

We use Pytorch for all model training. For the comparisons with MobileNetV2,
we use AdamW [6] optimizer with initial learning rate 1e−3 and weight decay of
0.05. We train the model for 300 epochs without cutmix and auto-augmentation,
which are adapted by previous All MLP networks [7,8] reproduced in the timm
[9] library. The reported results of MobileNetV2 are reproduced with the same
training settings. When comparing with other SOTA models, we report the re-
sults with advanced training recipes with CutMix [10] and RandAug [3] added
using same settings as previous methods [5,7,8].

D MedMLP Architecture

The architecture of building blocks of the proposed MedMLP can be found in
Fig. 3 in the main paper and Tab. B describes the complete architecture design
of MedMLP. Our network takes an image of arbitrary size n × n as input and
uniformly splits it into a sequence of image patches (4× 4). All the patches are
then mapped into linear embeddings (or called tokens) using a shared linear
layer as [7] followed by a layer normalization [1]. We next feed all the tokens
into a sequence of Adaptive MLP block to encode both spatial and channel
information.
Table C. Top-1 accuracy on ImageNet with different model sizes of MedMLP. Our
proposed MedMLP demonstrates outstanding scalability.

Model Params. (M) MAdds (B) Top-1 Acc. (%)

MedMLP-B0 4.9 0.6 74.3
MedMLP-B1 8.4 1.0 76.2 (+1.9)
MedMLP-B2 12.7 2.1 78.3 (+2.1)
MedMLP-B3 25.7 4.1 81.1 (+2.8)
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Table D. Impacts of natural image pre-training.

Networks Param. Pre-trained ImageNet (%) Real (%)

ViP (scaled) [5] 6.7M 1.5B 70.3 78.4
MedMLP-B0 (Ours) 4.9M 0.6B 74.3 81.6

References

1. Ba, J.L., Kiros, J.R., Hinton, G.E.: Layer normalization. arXiv preprint
arXiv:1607.06450 (2016) 2

2. Beyer, L., Hénaff, O.J., Kolesnikov, A., Zhai, X., Oord, A.v.d.: Are we done with
imagenet? arXiv preprint arXiv:2006.07159 (2020) 2

3. Cubuk, E.D., Zoph, B., Shlens, J., Le, Q.V.: Randaugment: Practical automated
data augmentation with a reduced search space. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition Workshops. pp. 702–703
(2020) 2

4. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: A large-
scale hierarchical image database. In: 2009 IEEE conference on computer vision
and pattern recognition. pp. 248–255. Ieee (2009) 2

5. Hou, Q., Jiang, Z., Yuan, L., Cheng, M.M., Yan, S., Feng, J.: Vision permu-
tator: A permutable mlp-like architecture for visual recognition. arXiv preprint
arXiv:2106.12368 (2021) 1, 2, 3

6. Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101 (2017) 2

7. Tolstikhin, I., Houlsby, N., Kolesnikov, A., Beyer, L., Zhai, X., Unterthiner, T.,
Yung, J., Keysers, D., Uszkoreit, J., Lucic, M., et al.: Mlp-mixer: An all-mlp ar-
chitecture for vision. arXiv preprint arXiv:2105.01601 (2021) 2

8. Touvron, H., Bojanowski, P., Caron, M., Cord, M., El-Nouby, A., Grave, E., Joulin,
A., Synnaeve, G., Verbeek, J., Jégou, H.: Resmlp: Feedforward networks for image
classification with data-efficient training. arXiv preprint arXiv:2105.03404 (2021)
2

9. Wightman, R.: Pytorch image models. https://github.com/rwightman/
pytorch-image-models (2019). https://doi.org/10.5281/zenodo.4414861 2

10. Yun, S., Han, D., Oh, S.J., Chun, S., Choe, J., Yoo, Y.: Cutmix: Regularization
strategy to train strong classifiers with localizable features. In: Proceedings of the
IEEE/CVF International Conference on Computer Vision. pp. 6023–6032 (2019)
2

https://github.com/rwightman/pytorch-image-models
https://github.com/rwightman/pytorch-image-models
https://doi.org/10.5281/zenodo.4414861
https://doi.org/10.5281/zenodo.4414861

