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Proof. The loss of ordinal contrasitve learning LOC can be conceptualized as:
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where si,j denotes the inner product of two embeddings zi and zj , and Li,p
OC represents the con-

trastive loss when the i-th sample serves as an anchor and the p-th sample is considered as a positive.
Then, gradient of loss Li,p

OC toward a positive sample zp can be derived as:
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For the other positives, indexed as q′ ∈ P (i) \ {p}, each of their gradients is:
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Likewise, gradient toward a negative sample zn′ for n′ ∈ N(i) is denoted as:
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Then, the magnitude of gradient w.r.t positives and negatives are calculated as:
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To make the magnitude of Gradpos and Gradneg same, τi,P is determined as:
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Table 1: Detailed sample-size per each modality pair. Limited pair-wise sample-size
demonstrates the need for our holistic translation model over one-to-one translations.

CT ✓ ✗ ✗ ✗ ✓ ✓ ✓ ✗ ✗ ✗ ✓ ✓ ✓ ✗ ✓

TAU ✗ ✓ ✗ ✗ ✓ ✗ ✗ ✓ ✓ ✗ ✓ ✓ ✗ ✓ ✓

FDG ✗ ✗ ✓ ✗ ✗ ✓ ✗ ✓ ✗ ✓ ✓ ✗ ✓ ✓ ✓

AMY ✗ ✗ ✗ ✓ ✗ ✗ ✓ ✗ ✓ ✓ ✗ ✓ ✓ ✓ ✓

# Sample 957 49 1626 478 31 3 177 25 36 954 4 53 324 140 275

Tau FDG β-Amyloid

(a)

(b)

Fig. 1: p-values from group comparisons with Bonferroni correction at α = 0.01: (a)
before imputation, (b) after imputation from our model. Resutant p-value maps on a
brain surface (left hemisphere) in a −log10 from CN and EMCI comparison with Tau,
FDG, and β-Amyloid. (b) shows higher sensitivity compared to (a).
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Fig. 2: Visualization of ROI-wise disparities between the real (target: Column) mea-
sure and the generated measure from each modality (source: Row) for the subject
‘009_S_1030’, illustrating the impact of LMC . Each disparity is normalized with the
ROI-wise mean and variance of the entire dataset. While self-reconstructions (diagonal
entries) are consistently achieved regardless of the adoption of LMC , yielding more
regions with small disparities (below σ/5) when adopting LMC in translations (non-
diagonal entries) suggests the effectiveness of maximizing the modality-wise coherence.


