1 Supplementary material

Explanation of Camera Sphere Parameters In order to facilitate the understanding of the mathematical concepts behind our sphere-based camera view angles generation method defined in Equations 1 and 2, we provide a detailed explanation of the underlaying parameters:

Equation 1: Number of Latitude Segments (N^{ϕ}) and Circles per Segment $(N_{\text{circ}}^{(i)})$

- r_{circ} : The radius of the circles used for camera viewpoints, which influences the spacing and overlap of the viewpoints.
- $-r_{sph}$: The radius of the sphere on which the camera viewpoints are distributed, i.e. the overall size of the area being considered for viewpoint placement.
- N^{ϕ} : The number of latitude floors on the sphere, which is calculated based on the ratio of the circle radius $(r_{\rm circ})$ to the sphere radius $(r_{\rm sph})$. N^{ϕ} is used to divide the sphere into horizontal segments, where each segment's height is determined in such a way that it roughly matches the diameters of the circles $(2r_{\rm circ})$.
- $\lfloor \cdot \rfloor$: The floor function, which rounds down to the nearest integer, and ensures that the number of segments and circles per segment are whole numbers.
- $N_{\text{circ}}^{(i)}$: The number of circles in the *i*-th latitude segment, based on the circumference of the sphere at latitude θ_i divided by the diameter of the circles, ensuring even spacing of the viewpoints.
- $-\theta_i$: The colatitude angle for the *i*-th latitude segment, with $\theta_i \in \{0, \ldots, \pi\}$

Equation 2: Spherical Camera Viewpoint Coordinates

 $-(\theta_i, \phi_j^{(i)})$: The spherical coordinates that define the camera viewpoints. θ_i is defined above. $\phi_j^{(i)} = j \cdot \frac{2\pi}{N_{\text{circ}}^{(i)}}$ is the azimuthal angle for the j-th circle within the i-th latitude segment. The term $\frac{2\pi}{N_{\text{circ}}^{(i)}}$ ensures an even distribution around the latitude circle.

Grasp generation and rendering pipeline configuration Table 1 outlines the different parameters our frame generation pipeline utilizes, which influence the diversity and quantity of frames produced:

Using the variable notations of Table 1, the frame generation in our dataset can be expressed as in Algorithm 1 below:

$\mathbf{2}$ M. Birlo et al.

Parameter	Description	Values
$(\Theta_{Vol})_j$	k-th $(k \in [1,, N])$ probe rotation	Manually selected set of three Euler an-
$(G_{[\Theta_{Vol}]})_k$	k-th manually selected GrabNet- based grasp out of all grasps gen- erated by Θ_{Vol}	11 manually selected plausible grasps via visual inspection in MeshLab
r _{sph}	Sphere radius	0.8m
r _{circ}	Sphere surface circle radius	0.15m
Θ_k	k-th $(k \in [1,, 92])$ camera view point Euler angles that depend on r_{sph} and r_{circ}	92 - 2 excluded = 90 values. Concrete Euler angles can be derived from ap- plying the sphere concept described in section 2.2
z_{ego}	Camera distance (egocentric head to hand distance)	[0.5, 0.8]
\mathcal{G}_{bkgr}	Background image for rendered grasp frames	1 x plain white, 1 x consultation room, 3 x SPACE-FAN phantom, 3 x real pregnant mother belly (white / brown / black)
H_{rgb}	RGB values of glove texture	$\begin{bmatrix} 0.5647058824\\ 0.5921568627\\ 0.768627451 \end{bmatrix}, \begin{bmatrix} 0.38039215686\\ 0.61960784314\\ 0.86666666667 \end{bmatrix}$
Argb	RGB values of the arm	[1.0, 0.6784313725, 0.3764705882]

Algorithm 1 Combinatorics for frame generation based on a selected grasp

Initialize $F \leftarrow \emptyset$ $f = G_{evol}(G_{[\Theta_{Vol}]})_k$, egocentric viewpoint z_{ego} , background image \mathcal{G}_{bkgr} , hand texture H_{rgb} , camera view Euler angles Θ_k , sphere radius r_{sph} , circle radius r_{circ} Output: Set of frames F1: Initialize $F \leftarrow \emptyset$ 2: for all $(G_{[\Theta_{Vol}]})_k, z_{ego}, \mathcal{G}_{bkgr}, H_{rgb}, \Theta_k$ do 3: $frame \leftarrow GenerateFrame((G_{[\Theta_{Vol}]})_k, z_{ego}, \mathcal{G}_{bkgr}, H_{rgb}, \Theta_k, r_{sph}, r_{circ})$

- 4: $F \leftarrow F \cup \{frame\}$ 5: end for