
Supplementary to Laplacian Segmentation
Networks Improve Epistemic Uncertainty

Quantification

1 Implementation and Training Details

Training configurations are provided in Table 1. All models were trained with
the Adam optimizer. The U-net backbone was constructed with feature maps of
size 8, 16, 32, 64, 128. Uncertainty measures were approximated from 50 samples
from the posterior and 20 samples from the logit distribution.

Table 1: Implementation and Training Details. Dropout models for the ISIC
dataset were trained with a 0.0005 learning rate to improve convergence.

Dataset

Configuration ISIC Prostate Brats
Epochs 60 150 600
Batch Size 32 10 32
Learning Rate 0.001* 0.001 0.001

2 Fast Hessian Approximation

Consider a neural network (nn) fθ : X → Y with L layers. The parameter
θ = (θ1, . . . , θL) ∈ Θ is the concatenation of the parameters for each layer
i ∈ {1, ..., L}. The nn fθ = f

(L)
θL

◦ f
(L−1)
θL−1

◦ . . . ◦ f
(2)
θ2

◦ f
(1)
θ1

is a composition of
L functions f (L), f (L−1), . . . , f (1), where f (i) is parametrized by θi. Let x0 ∈ X
be the input and xi := f

(i)
θi

(xi−1) for i = 1, . . . , L, such that the nn output is
xL ∈ Y. We define the diagonal operator D : Rm×m → Rm×m on quadratic
matrices as

[D(M)]ij :=

{
Mij if i = j
0 if i ̸= j

∀i, j = 1, . . . ,m.

The Jacobian Jθfθ(x0) of the nn has a layer block structure, block i is

Jθifθ(x0) = Jθi

(
f
(i)
θi

◦ · · · ◦ f (L)
θL

)
(xi−1) =

 i+1∏
j=L

Jxj−1f
(j)
θj

(xj−1)

 Jθif
(i)
θi

(xi−1).

The Laplace approximation requires the Hessian H of the loss w.r.t. the
parameters ∇2

θL(fθ(x0)) ∈ R|θ|×|θ|. Using the chain rule it holds, that

∇2
θL(fθ(x0))︸ ︷︷ ︸

=:Hθ

= Jθfθ(x0)
⊤ · ∇2

xL
L(xL) · Jθfθ(x0)︸ ︷︷ ︸

=:ggnθ

+

|xL|∑
o=1

[∇xL
L(xL)]o ·∇2

θ[fθ(x0)]o,

2 F. Author et al.

where [v]o refers to the o-th component of vector v and |v| to its length. We can
write the diagonal block ggnb(i)

θ = Jθifθ(x0)
⊤HLJθifθ(x0) of the i-th layer as

ggnb(i)
θ =Jθifθ(x0)

⊤ · HL · Jθifθ(x0) (1)

From this expression, plus the chain rule expansion of the Jacobian, we can
build an efficient backpropagation-like algorithm to compute ggnbθ, it start
from HL and then iterated backward over layers. The same holds for the di-
agonal approximation, which we refer to as ggndθ := D(ggnθ) = D(ggnbθ).
This approach already scales linearly in the number of parameter |θ|. On top of
that, the diagonal backpropagation approximates the diagonal of the Generalized
Gauss-Newton matrix. It is defined, for each layer i, by adding a diagonalization
operator in between each Jacobian product, marked red in Algorithm 1. Without
this extra operator the algorithm would return the exact diagonal.

Algorithm 1 Computation of dbθ

M = HL

for j = L,L− 1, . . . , 1 do
db(j)

θ = D
(
Jθjf

(j)
θj

(xj−1)
⊤ ·M · Jθjf

(j)
θj

(xj−1)
)

M = D
(
Jxj−1f

(j)
θj

(xj−1)
⊤ ·M · Jxj−1f

(j)
θj

(xj−1)
)

end for
dbθ = (db(1)

θ , . . . ,db(L)
θ)

return dbθ

Proposition. For an autoencoder network, the memory requirement of the
Algorithm scale linearly both in number of parameter and in number of pixels.

Proof. The bottlenecks are the storage of the matrixes db(j)
θ ∈ R|θj | and M ∈

R|xj−1| at each step j

Skip-connections For any given submodule gθ, a skip-connection layer sc(g)θ is
defined as x 7−→ (gθ(x), x). The Jacobian with respect to the parameter is the
same as the Jacobian of the gθ while the Jacobian with respect to the input is

Jxsc(g)θ(x) =
(
Jxgθ(x)

I

)
∈ R(O+I)×I .

Proposition. If M is diagonal, then one step of Alg 1 can be computed as

D
(
JxSC(g)θ(x)

⊤ ·M · JxSC(g)θ(x)
)
= D

(
Jxgθ(x)

⊤M11Jxgθ(x)
)
+D(M22).

Proof. Let M =

(
M11 M12

M21 M22

)
and then

JxSC(g)θ(x)
⊤·M · JxSC(g)θ(x) =

(
Jxgθ(x)

⊤ I
)(M11 M12

M21 M22

)(
Jxgθ(x)

I

)
= Jxgθ(x)

⊤M11Jxgθ(x) +M12Jxgθ(x) + Jxgθ(x)
⊤M21 +M22

