
Supplementary Material

Methods	Details
RSCFed	K=3, M=3 for ICH and $K=6, M=10$ for ChestXray14
FixMatch	$ au{=}0.8$
FedIRM	$T{=}20,\tau{=}2.0,\omega{=}30,ema{=}0.99$
CBAFed	$P{=}50, \alpha_1{=}0.8, \alpha_2{=}0.5, J{=}1, T{=}500, \tau{=}0.6$
FedLSR	$\lambda \sim Beta(1,1), \ \gamma = Min[0.4 \cdot \frac{t}{40}, \ 0.4]$
FedNoRo	$\lambda_{max}{=}0.8$

 Table 1. Implementation details of some comparison methods.

Fig. 1. Results of FedAvg on *ICH* where cool classes with lower annotation rates facing performance degradation. The recognition ability of class 1 is also weak due to the influence of intra-class imbalance.

Algorithm 1 FedMLP.

Input: Initialized global model θ_G^1 ; dataset D_k in client k amount $N_k, k \in [K]$; labeled class set AC_k and unlabeled class set NC_k in client k; hyper-parameter L, R, T_0 and T_1 ; Warm-up rounds t_1 ; total communication rounds T; local training epoch E. $0: \triangleright Stage1: Warm-up$ 1: for $t \leftarrow 1$ to t_1 do In local clients 2: for $k \leftarrow 1$ to K do 3: $\theta_k^t \leftarrow \theta_G^t$ 4: for $e \leftarrow 1$ to E do 5:Augment for each sample in D_k as $D_k^{Aug_1}$ and $D_k^{Aug_2}$ 6: $\theta_k^t \leftarrow \text{update by Eq. 4}$ with the local dataset $D_k^{Aug_1} \cup D_k^{Aug_2}$ 7:8: end for 9: if $t = t_1$ then 10:Local Calculation() 11: end if 12:end for In central server 13:14:if $t = t_1$ then Global Aggregation $(\theta_k^t, P_0^{k,c}, P_1^{k,c}, d_c^k)$ 15:16:else $\theta_G^{t+1} \leftarrow \sum_{k=1}^K \frac{N_k}{\sum_{i=1}^K N_i} \theta_k^t$ 17:end if 18:19: **end for** 19: \triangleright Stage2: Missing Label Detection 20: for $t \leftarrow t_1 + 1$ to T do In local clients 21: for $k \leftarrow 1$ to K do 22:Download $\tau_0, \tau_1, \theta_G^t, P_0^c, P_1^c$ and d_c^G 23:select samples and categories with pseudo-labels use Eq. $7 \sim 9$ 24:25:for $e \leftarrow 1$ to E do 26: $\theta_k^t \leftarrow$ updated by Eq. 4 for hard labels and MSE for soft labels end for 27:Local Calculation() 28:end for 29:In central server 30:Global Aggregation $(\theta_k^t, P_0^{k,c}, P_1^{k,c}, d_c^k)$ 31: 32: end for 33: $\begin{array}{l} \textbf{Global Aggregation}(\theta_k^t, P_0^{k,c}, P_1^{k,c}, d_c^k) \\ \theta_G^{t+1} \leftarrow \sum_{k=1}^{K} \frac{N_k}{\sum_{i=1}^{K} N_i} \theta_k^k \end{array}$ 34: 35:Calculate P_0^c , P_1^c and d_c^G use Eq. 6 and 10 36: 37: Calculate τ_0 and τ_1 38: **Output**: θ_G^{t+1} , P_0^c , P_1^c , d_c^G , τ_0 and τ_1 . 39:40: Local Calculation() 41: Calculate $P_0^{k,c}$ and $P_1^{k,c}$ for $c \in AC_k$ use Eq. 5 42: Calculate d_c^k for $c \in AC_k$ use Eq. 10 43: Output: $P_0^{k,c}$, $P_1^{k,c}$ and d_c^k . **Output**: Global model θ_G^{T+1} .

$\mathbf{2}$