Advancing Sensorless Freehand 3D Ultrasound Reconstruction with a Novel Coupling Pad: Supplementary Materials

Ling Dai^{1,2}, Kaitao Zhao³, Zhongyu Li², Jihua Zhu^{2*}, and Libin Liang^{1,4*}

¹ Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China

lianglibin@xjtu.edu.cn

² School of Software Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, China ³ Shaanxi Second Provincial People's Hospital

⁴ Research Institute of Xi'an Jiaotong University, Zhejiang, China

1 9-line extraction

After obtaining a volume of dimensions $H \times W \times D$. We extract slices along the volume's D direction at each step d, obtaining slices on the $H \times W$ plane. For each slice image, we apply k-means clustering to determine the centers of each cluster, denoted as $centers_{xy}$. Subsequently, we identify the coordinates of the brightest points surrounding each center, represented by $brightest_{xy}$. These two-dimensional coordinates are concatenated with d and multiplied by the volume resolution r to obtain 3D coordinates $r \cdot brightest_{xyz}$. Utilizing this algorithm, a point cloud S_{lines} is generated.

Algorithm 1 9-line extraction
Input: image
$\mathcal{S}_{lines} \leftarrow \text{Empty point cloud}$
for d from 1 to D do
$image \leftarrow volume[:,:,d]$
$(x, y) \leftarrow X, Y$ coordinates where $image(y, x)$ intensities $> intensity_threshold$
$centers_y \leftarrow Cluster(x, y)$ into 3 groups using K-means on Y
for each center c_y in centers _y do
$(x, y) \leftarrow \text{Filter} (x, y) \text{ where } c_y - \delta < y < c_y + \delta$
$centers_{xy} \leftarrow Cluster(x, y)$ into 3 groups using K-means on X, Y
for each center c_{xy} in $centers_{xy}$ do
$brightest_{xy} \leftarrow$ the brightest point coordinate within a δ offset around c_{xy}
$brightest_{xyz} \leftarrow Concatenate \ brightest_{xy} \ and \ d$
Append $(r \cdot brightest_{xyz})$ to \mathcal{S}_{lines}
end for
end for
end for
Return \mathcal{S}_{lines}

2 The Composition of the Coupling Pad

The coupling pad is composed mainly of deionized water and other ingredients: sodium alginate polymer 1.0% to 6.0%, carrageenan 1.0% to 5.0%, xanthan gum 0.03% to 0.05%, hydroxypropyl cellulose 0.1% to 0.8%, propylene glycol 2.0% to 15%, glycerin 2.0% to 15%, preservative 0.01% to 0.12%.

3 Detailed Measurement data on a Solid Phantom

Mode	Part	Scan 1	Scan 2	Scan 3	Scan 4	Scan 5	mean error (mm)
	1	13.33	14.05	13.55	13.96	14.06	0.25
	2	9.87	10.36	10.33	10.12	10.04	0.20
Linear	3	27.22	27.53	27.58	27.33	27.63	0.46
	4	14.58	14.40	15.13	14.84	14.56	0.35
	5	25.34	25.30	25.36	25.45	25.53	0.40
	1	14.29	14.31	14.76	14.81	14.05	0.44
	2	10.29	10.32	10.74	10.47	10.38	0.44
Oscillating	3	27.59	27.68	27.68	27.74	27.77	0.69
	4	14.91	15.36	15.23	15.03	15.48	0.24
	5	25.32	26.04	26.30	25.75	25.57	0.80
	1	14.31	14.07	13.86	13.94	14.30	0.18
Back-	2	10.34	10.18	10.38	10.06	10.15	0.22
and-	3	27.88	27.58	27.46	27.18	27.19	0.46
forth	4	14.69	15.19	15.06	15.01	14.76	0.16
	5	25.90	24.80	24.78	25.20	25.32	0.37

 Table 1. Solid phantom measurement data and distance error.