Supplementary Material for Enhancing Federated Learning Performance Fairness via Collaboration Graph-based Reinforcement Learning

Yuexuan Xia¹[⋆], Benteng Ma¹[⋆], Qi Dou², and Yong Xia^{1,3,4⊠}

¹ National Engineering Laboratory for Integrated Aero-Space-Ground-Ocean Big Data Application Technology, School of Computer Science and Engineering,

Northwestern Polytechnical University, Xi'an 710072, China

² Department of Computer Science and Engineering, The Chinese University of Hong Kong, Sha Tin, Hong Kong

³ Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen 518057, China

⁴ Ningbo Institute of Northwestern Polytechnical University, Ningbo 315048, China yxia@nwpu.edu.cn

Fig. 1. Detailed architecture of the actor-critic network for (a) a traditional reinforcement learning agent and (b) our FedGraphRL agent equipped with a multi-layer AGCN.

^{*} Yuexuan Xia and Benteng Ma contributed equally to this work.

Fig. 2. The average (left half) and the variance (right half) of test accuracy on all clients on (a) HAM10k, and (b) Fed-DRG.

Dataset	Centers	Device System/Source	Train	Validation	Test
HAM10k	vidir_molemax	MoleMax HD	2769	394	791
	vidir_modern	DermLiteTM FOTO	2355	336	672
	rosendahl	DermLite Fluid/DL3	1582	225	452
	vienna_dias	Heine Dermaphot	308	43	88
Fed-DRG	APTOS	Multiple Devices	2551	370	741
	DeepDR	TOPCON, Optomap P200Tx	1401	199	400
	FGADR	Collected by IIAI	1289	185	368
	e-ophtha	OPHDIAT Tele-medical network		44	88
	IDRiD	Kowa VX-10	361	52	103
	Messidor	Topcon TRC NW6	1221	174	349

Table 1. The Summary of HAM10k and Fed-DRG datasets.

Table 2. Comparison of mainstream FFL objective functions as the aggregate loss in reward function, with q-FedAvg's objective function achieving the highest average accuracy and lowest standard deviation across two federated datasets. For each task, **best** rank is marked.

	HAM10k		Fed-DRG			
L_t	Principle	Objective	Avg.	Std.	Avg.	Std.
FedAvg	Utilitarian	$\sum_i p_i l_i$	82.11	10.71	82.40	8.10
AFL	Egalitarian	$\max_i l_i$	82.20	9.64	82.54	8.10
q -FedAvg $ _{q=0.1}$	α -fairness	$\sum_{i} \frac{p_i}{q+1} l_i^{q+1}$	82.59	9.51	83.67	7.88
$\text{TERM} _{\alpha=0.5}$	N/A	$\sum_{i} p_{i} e^{lpha l_{i}}$	82.25	10.20	82.66	8.17
$\operatorname{PropFair} _{M=5.0}$	Proportional	$-\sum_{i} p_i \log(M - l_i)$	82.31	10.30	82.21	8.48
$\mathrm{Prop}\text{-}\mathrm{FFL} _{q=0.1,\lambda=0.7}$	Proportional	$\left \sum_{i} \left(\frac{1-\lambda}{q+1}l_{i}^{q+1} + \lambda \log \frac{\sum_{j} l_{j}}{l_{i}}\right)\right $	81.62	11.12	82.45	8.14