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Fig. 1. Detailed architecture of the actor-critic network for (a) a traditional rein-
forcement learning agent and (b) our FedGraphRL agent equipped with a multi-layer
AGCN.
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Fig. 2. The average (left half) and the variance (right half) of test accuracy on all
clients on (a) HAM10k, and (b) Fed-DRG.

Table 1. The Summary of HAM10k and Fed-DRG datasets.

Dataset Centers Device System/Source Train Validation Test
vidir _molemax MoleMax HD 2769 394 791
HAM10K vidir_modern DermLiteTM FOTO 2355 336 672
rosendahl DermLite Fluid/DL3 1582 225 452
vienna_ dias Heine Dermaphot 308 43 88
APTOS Multiple Devices 2551 370 741
DeepDR TOPCON, Optomap P200Tx | 1401 199 400
Fed-DRG FGADR Collected by ITAIL 1289 185 368
e-ophtha OPHDIAT Tele-medical network| 310 44 88
IDRiD Kowa VX-10 361 52 103
Messidor Topcon TRC NW6 1221 174 349

Table 2. Comparison of mainstream FFL objective functions as the aggregate loss
in reward function, with q-FedAvg’s objective function achieving the highest average
accuracy and lowest standard deviation across two federated datasets. For each task,
best rank is marked.

Task HAM10k | Fed-DRG

Ly Principle Objective Avg. Std. | Avg. Std.

FedAvg Utilitarian > pili 82.11 10.71]82.40 8.10

AFL Egalitarian max;l; 82.20 9.64 |82.54 8.10
q-FedAvg|,—0.1 a-fairness >, el 82.59 9.51|83.67 7.88
TERM|a—0.5 N/A >, pieh 82.25 10.20|82.66 8.17
PropFair|p=5.0  |[Proportional|  —3". p;log(M — ;) 82.31 10.30|82.21 8.48
Prop-FFL|g=0.1,x=0.7|Proportional >, (};T’l\l;”l + Alog Z%’) 81.62 11.12|82.45 8.14
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