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(a) Traditional Reinforcement Learning Agent (b) Reinforcement Learning Agent 
with Multi-Layer AGCN

Fig. 1. Detailed architecture of the actor-critic network for (a) a traditional rein-
forcement learning agent and (b) our FedGraphRL agent equipped with a multi-layer
AGCN.
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(a) HAM10k (b) Fed-DRG

Fig. 2. The average (left half) and the variance (right half) of test accuracy on all
clients on (a) HAM10k, and (b) Fed-DRG.

Table 1. The Summary of HAM10k and Fed-DRG datasets.

Dataset Centers Device System/Source Train Validation Test

HAM10k

vidir_molemax MoleMax HD 2769 394 791
vidir_modern DermLiteTM FOTO 2355 336 672

rosendahl DermLite Fluid/DL3 1582 225 452
vienna_dias Heine Dermaphot 308 43 88

Fed-DRG

APTOS Multiple Devices 2551 370 741
DeepDR TOPCON, Optomap P200Tx 1401 199 400
FGADR Collected by IIAI 1289 185 368
e-ophtha OPHDIAT Tele-medical network 310 44 88
IDRiD Kowa VX-10 361 52 103

Messidor Topcon TRC NW6 1221 174 349

Table 2. Comparison of mainstream FFL objective functions as the aggregate loss
in reward function, with q-FedAvg’s objective function achieving the highest average
accuracy and lowest standard deviation across two federated datasets. For each task,
best rank is marked.

Task HAM10k Fed-DRG
Lt Principle Objective Avg. Std. Avg. Std.

FedAvg Utilitarian
∑

i pili 82.11 10.71 82.40 8.10
AFL Egalitarian maxili 82.20 9.64 82.54 8.10

q-FedAvg|q=0.1 α-fairness
∑

i
pi
q+1

lq+1
i 82.59 9.51 83.67 7.88

TERM|α=0.5 N/A
∑

i pie
αli 82.25 10.20 82.66 8.17

PropFair|M=5.0 Proportional −
∑

i pi log(M − li) 82.31 10.30 82.21 8.48
Prop-FFL|q=0.1,λ=0.7 Proportional

∑
i (

1−λ
q+1

lq+1
i + λ log

∑
j lj

li
) 81.62 11.12 82.45 8.14
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