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Preliminaries: Segment Anything Model or SAM [3] was recently proposed as
a foundational model for prompt-guided image segmentation. These prompts can
be (i) foreground/background points that are vectorized using positional embed-
dings, (ii) bounding boxes that can be represented by the positional embeddings
of their corner points, (iii) masks that can be encoded through a Convolutional
Neural Network (CNN) or (iv) text that uses CLIP [4] embeddings. Note that
support for the text-based prompts is not included in SAM’s released codebase.
Prompt-guided learning is facilitated through separate encoders for the image
and the prompt, which are then fused using a mask decoder module. The image
encoder in SAM is a Vision Transformer (ViT) [1] that is pre-trained using the
Masked Auto-Encoder (MAE) strategy [2] and is responsible for the majority of
the memory consumption. The mask decoder is a lightweight transformer-based
component while the prompt encoder embeds the different prompts as described
earlier and combines them.

Number of Singular Values Tuned: We conduct experiments to check

Table 1: Ablation analy-
sis on percentage of sin-
gular values tuned.

Percent of singular values tuned Avg. DSC
1 0.49
10 0.54
50 0.56
100 0.71

whether all the singular values need to be tuned
to model the required domain shift. As seen in Ta-
ble 1, we tune only the top k% values, where k ∈
{1, 10, 50, 100}. However, we see a significant drop
in performance on reducing k on the CholecSeg8k
dataset. This is expected since the eigenvectors cor-
responding to the top singular values for the natural
image domain might not be the most relevant vectors
for the new medical domain. Hence, best performance is observed when k is 100.
Experimental Setup: We use the ’ViT-base’ backbone checkpoint from SAM
for initializing our model, while the weights of the TAL network are initialized
using the default settings of Pytorch (Kaiming Uniform). We apply augmenta-
tions including random rotation (±10◦) with 0.5 probability, random saturation
change with a scale of 2 with 0.2 probability, and random brightness change with
a scale of 2 with 0.5 probability during training for all input images, followed by
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the normalization used in SAM. All training is done with the AdamW optimizer
with a learning rate of 1e-4, on a single Nvidia RTX A6000 GPU. The memory
requirement for a given training instance is less than 12 GB when the image
is resized to 256 × 256. The loss function used for all experiments is the sum
of dice loss and focal loss between the ground truth label and the predicted mask.

Table 2: Results on Abdominal Ultrasound.
Method Objectwise DSC

Liver Kidney Pancreas Vessels Adrenals Gall Bladder Bones Spleen Avg.

Traditional DL methods
UNet 0.28 0.37 0.11 0.16 0.85 0.08 0.17 0.14 0.27

TransUNet 0.18 0.09 0.03 0.03 0 0.11 0.05 0.02 0.08
MedT [5] 0.18 0.03 0.27 0.10 0.85 0.15 0.02 0.08 0.21

SAM based methods
SAM w/ text prompt 0.17 0.20 0.72 0.21 0.44 0.65 0.67 0.63 0.46
SAM w/ point prompt 0.11 0 0.01 0 0.01 0.01 0.01 0.01 0.02

SAM with full finetuning 0.21 0.48 0.67 0.56 0.81 0.69 0.54 0.53 0.56
MedSAM 0.14 0.03 0.01 0.01 0 0.01 0 0.02 0.03
SAMed 0.20 0.50 0.61 0.56 0.82 0.63 0.54 0.54 0.55

AdaptiveSAM 0.36 0.30 0.50 0.40 0.86 0.63 0.67 0.54 0.53
Low Rank Adaptation of SAM 0.43 0.35 0.45 0.61 0.90 0.59 0.67 0.67 0.58

S-SAM (Ours) 0.32 0.52 0.80 0.61 0.91 0.75 0.67 0.43 0.63

Table 3: Results on ChestXDet.
Ef - Effusion, No - Nodule, Cm - Cardiomegaly, Fb - Fibrosis, Co - Consolidation, Em - Emphysema, Ma - Mass
Ca - Calcification, Pt - Pleural Thickening, Pn - Pneumothorax, Fr - Fracture, At - Atelectasis, Dn - Diffuse Node

Method Object wise DSC

Ef No Cm Fb Co Em Ma Ca Pt Pn Fr At Dn Avg.

Traditional DL methods
UNet 0.15 0.08 0.06 0 0.13 0.02 0.95 0 0.08 0 0.50 0.02 0.02 0.15

TransUNet 0.06 0.87 0.06 0.59 0.13 0.01 0.89 0 0.74 0 0.08 0 0 0.26
MedT 0.06 0.75 0.08 0.01 0.10 0.03 0.12 0 0.91 0 0 0.37 0.07 0.19

SAM based methods
SAM w/ text prompt 0.05 0.13 0.53 0.36 0.15 0.28 0.23 0.10 0.37 0.07 0.40 0 0.26 0.22
SAM w/ point prompt 0.04 0 0.01 0.01 0.04 0.01 0 0 0 0 0 0 0.02 0.01

SAM with full finetuning 0.55 0.88 0.87 0.086 0.52 0.93 0.95 0.93 0.84 0.93 0.86 0.92 0.94 0.84
MedSAM 0.04 0 0.02 0.01 0.04 0.02 0 0 0 0 0.02 0 0.02 0.01
SAMed 0.50 0.89 0.90 0.83 0.50 0.93 0.94 0.91 0.83 0.92 0.85 0.93 0.93 0.83

AdaptiveSAM 0.52 0.88 0.86 0.86 0.43 0.93 0.95 0.91 0.84 0.93 0.86 0.94 0.93 0.83
Low Rank Adaptation of SAM 0.50 0.89 0.90 0.83 0.42 0.93 0.96 0.91 0.84 0.93 0.86 0.94 0.94 0.83

S-SAM (Ours) 0.48 0.89 0.87 0.86 0.4 0.93 0.96 0.94 0.84 0.94 0.87 0.94 0.95 0.84
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