Supplemental Materials

A Derivation of the SG-RCPS algorithm

Without subgroups: We start by summarizing the situation without subgroups. Let X be the set of features and Y the corresponding set of responses. Additionally, let T be a predictor with $\mathcal{T}: X \to \hat{Y}$ where \hat{Y} is the space of sets that include different responses Y. The risk of $\mathcal T$ is defined as

$$
\mathcal{R}(\mathcal{T}) = \mathbb{E}\left[\mathbb{1}_{\{Y \notin \mathcal{T}(X)\}}\right] = \Pr(Y \notin \mathcal{T}(X)),
$$

where the expectation is taken over the distribution of X and Y on the calibration data set. Using the RCPS framework we can construct a predictor $\mathcal T$ such that $\mathcal{R}(\mathcal{T}) \leq \alpha$ with a probability of at least $1 - \delta$. We note that the indicator function is bounded, which means that the risk is guaranteed to be bounded by

$$
\mathcal{R}(\mathcal{T}) = \mathbb{E}[\mathbb{1}_{\{Y \notin \mathcal{T}(X)\}}]
$$
\n
$$
= \mathbb{E}[\mathbb{1}_{\{Y \notin \mathcal{T}(X)\}} | \mathcal{R}(\mathcal{T}) \leq \alpha] \cdot \Pr(\mathcal{R}(\mathcal{T}) \leq \alpha)
$$
\n
$$
+ \mathbb{E}[\mathbb{1}_{\{Y \notin \mathcal{T}(X)\}} | \mathcal{R}(\mathcal{T}) > \alpha] \cdot (1 - \Pr(\mathcal{R}(\mathcal{T}) \leq \alpha))
$$
\n
$$
\leq \alpha + \delta.
$$
\n(1)

With subgroups: We model the case with multiple subgroups in the dataset by introducing an additional random variable Z that takes values in $\{1, \ldots, K\}$ and addresses the different subgroups. For example, if Z takes the value 1, (X, Y) is assumed to be distributed according to the first subgroup, if Z takes the value 2, (X, Y) is distributed according to the second subgroup, etc. The value of Z is unknown at test time. Algorithm 1 ensures that the risk for each subgroup is bounded via Eq. [\(1\)](#page-0-0), that is,

$$
\mathcal{R}(\mathcal{T}) = \Pr(Y \notin \mathcal{T}(X)) = \mathbb{E}[\mathbb{1}_{\{Y \notin \mathcal{T}(X)\}} | Z = \bar{z}] \le \alpha + \delta,
$$

for the distribution of (X, Y) conditioned on the subgroup \overline{z} . This is due to the fact that Algorithm 1 applies the upper confidence bound arising from Hoeffding's inequality for each subgroup $\bar{z} \in \{1, \ldots K\}$ separately. The fact that the risk of the predictor T is bounded by $\alpha + \delta$ (conditional on Z), implies that the same holds for the distribution of (X, Y) during test time:

$$
\mathcal{R}(\mathcal{T}) = \Pr(Y \notin \mathcal{T}(X)) = \mathbb{E}_{XY} \left[\mathbb{1}_{\{Y \notin \mathcal{T}(X)\}} \right] \n= \mathbb{E}_{Z} \left[\underbrace{\mathbb{E}_{XY|Z} \left[\mathbb{1}_{\{Y \notin \mathcal{T}(X)\}} \right]}_{\leq \alpha + \delta} \right]
$$
\n(2)

B Summary of the dataset

	Training Dataset						
Overall Segments	3958						
Entity	Prostate Liver HN Mamma						
Patients	40	15	15				
Segments	2015		821 1013	109			

Table 1. Number of patients and segments per tumour entity in training dataset

Table 2. Number of patients and segments per tumour entity in test dataset

	Test Dataset							
Overall Segments	2657							
Entity	Prostate	Liver	HN.	Mamma	Lymphnodes			
Patients	10	10	10		15			
Segments	646	525	731	128	627			