12 A. H. Berger et al.

6 Supplementary Material

Alpha scheduling

$$\alpha = \left(\frac{2}{1 + e^{-10p}} - 1\right) \cdot \alpha_{\max} \tag{6}$$

with:

$$p = \frac{\text{step} - \text{warmup}_{\alpha}}{\text{total_steps}} \tag{7}$$

Table 2: Overview of the used datasets, the respective image sizes, and the train, validation, and test splits.

Dataset	Structures	Patch-Size	Training	Test	
Dataset			$\mathbf{samples}$	samples	samples
ACDC	Cardiac	154×154	4596	1110	3228
Platelet	(Sub-)Cellular	200×200	1440	360	864
OCTA-500	Retinal	301×301	128	32	40
TopCoW	Cerebrovascular	100×80	70	18	22

Table 3: Hyperparameter search space for model hyperparameters.

Dataset	max epochs	learning rate samples	num layers	num res. units	batch size
ACDC	100	[0.0001, 0.01]	$\{4, 5\}$	$\{2, 3, 4, 5\}$	$\{8, 16, 32, 64, 128\}$
Platelet	100	[0.00005, 0.005]	$\{4, 5\}$	$\{2, 3, 4, 5\}$	$\{8, 16, 32, 64, 128\}$
OCTA-500	300	[0.0001, 0.01]	$\{4, 5\}$	$\{2, 3, 4, 5\}$	$\{8, 16, 32, 64\}$
TopCoW	300	[0.0001, 0.01]	$\{4, 5\}$	$\{2, 3, 4, 5\}$	$\{8, 16, 32\}$

Table 4: Hyperparameter search space for loss-related hyperparameters.

Dataset	$\alpha_{ m clDice}$	α	\mathbf{warmup}_{lpha}	ignore background
ACDC	[0.1, 0.8]	[0.001, 0.1]	$\{0, 10, 20, 50\}$	$\{$ true, false $\}$
Platelet	[0.1, 0.8]	[0.001, 0.1]	$\{0, 10, 20, 50\}$	$\{true, false\}$
OCTA-500	[0.1, 0.8]	[0.001, 0.05]	$\{0, 20, 50, 100\}$	$\{true, false\}$
TopCoW	[0.1, 0.8]	[0.001, 0.1]	$\{0, 10, 20, 50\}$	$\{true, false\}$

Fig. 4: Additional ablation on the introduced weighting term with the ACDC dataset. We find a different trend compared to Fig. 3, showcasing that the weight parameter must be tuned according to the dataset.

		\mathbf{Loss}	OCTA-5	500 TopC	\mathbf{W}	
		Dice	16m56	s $5m26$	ős	
		CiDice HuTope	17m17 59m27	$s 7m32 \\ s 19m0$	2s 1s	
		Ours	28m10	s 10m3	9s	
	Input	Label	clDice	Dice	НиТоро	Ours
(a)		•	63	¢	40	•
(b)	10.0					
(c)						
(d)	A.					

Table 5: Runtime comparison on two datasets for a single run.

Fig. 5: Additional qualitative results on ACDC (a), Platelet (b), OCTA-500 (c), and TopCoW (d) dataset.