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1 Result Supplementations

The domain adaptation capability of pFLFE. We verify the domain adaptation capa-
bility on all 3 tasks. In an unseen client, we extract and freeze their encoders trained on
other clients, only fine-tuning the decoders.

In Table 1 and Table 2, we observe clear trends across the other two tasks. FedRep
outperforms the single global model framework slightly. This can be attributed to the
generality and robustness of the global parts generated by FedRep. Compared to other
methods, pFLFE demonstrated distinct performance advantages. This indicates that the
shared Encoder in pFLFE exhibits better generalization and robustness, making it well-
suited for domain adaptation tasks.

Overall, these findings highlight the importance of designing personalized feder-
ated learning methods with strong domain adaptation capabilities. By generating shared
parts that possess better generalization and robustness, models can effectively adapt to
new data domains and achieve superior performance.

2 Experiments setup

Implementation details. We use the Dice coefficient as the evaluation metric. To en-
sure the reliability of our experiments. It is a set similarity metric commonly used to
calculate the similarity between two samples, with a threshold of [0,1]. In medical im-
ages, it is often used for image segmentation, with the best segmentation result being 1
and the worst result being 0. The Dice coefficient calculation formula is as follows:

Dice =
2 ∗ (pred ∩ true)

pred ∪ true
(1)

Among them, pred is the set of predicted values, while true is the set of ground
truth values. And the numerator is the intersection between pred and true. Multiplying
by 2 is due to the repeated calculation of common elements between pred and true in
the denominator. The denominator is the union of pred and true.

We calculate the average Dice coefficient for each client (DiceACli), the average
Dice coefficient for all test images (DiceAImg), and the variance of Dice across clients
(VDiceACli) to evaluate the model’s performance and client discrepancy. Their calcula-
tion method is as follows:
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Table 1: Comparison of federated do-
main generalization results on poly seg-
mentation.

unseen Client1 Client2 Client3 Client4 DiceACli↑
FedAvg 0.6312 0.4261 0.7231 0.4187 0.5226

SCAFFOLD 0.7111 0.5621 0.6933 0.6002 0.6417
FedProx 0.7176 0.5433 0.7225 0.5427 0.6315

Ditto 0.6447 0.4392 0.7125 0.5243 0.5802
FedRep 0.7432 0.6455 0.6972 0.6327 0.6797

ours 0.7672 0.6954 0.8368 0.7477 0.7618

Table 2: Comparison of federated domain generaliza-
tion results on prostate segmentation.

unseen Client1 Client2 Client3 Client4 Client5 Client6 DiceACli↑
FedAvg 0.8021 0.7895 0.8519 0.6301 0.8209 0.5611 0.7426

SCAFFOLD 0.8214 0.7921 0.8133 0.6501 0.8509 0.5926 0.7534
FedProx 0.8111 0.7881 0.8644 0.6067 0.8048 0.6023 0.7462

Ditto 0.7962 0.7772 0.8791 0.5901 0.8411 0.5097 0.7322
FedRep 0.8457 0.8234 0.8325 0.6992 0.8192 0.6311 0.7752

ours 0.8721 0.8412 0.8848 0.8971 0.8765 0.6598 0.8386

N is the total number of clients. mi is the total number of data in client i. Diceij is
the Dice result of the i-th client’s j-th data. DiceACli calculates the average result for
each client, and then calculates the average.
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M is the sum of all participating client images. DiceAImg calculates the total result of
all client images, and then calculates the average value of each image.

V DiceACli is the variance calculated based on DiceACli for each client result.
Image augmentations. For RGB images, the input images are resized to 256×256.

They undergo color distortion, which includes a random sequence of brightness, con-
trast, saturation, hue adjustments, and optional grayscale conversion. Finally, random
horizontal flips and Gaussian blur are applied to the processed images. For grayscale
images, the input images are resized to 384×384. Unlike RGB augmentation, grayscale
images do not undergo brightness adjustments. The augmentation includes random hor-
izontal flip, Gaussian blur, and random vertical flip.

Architecture. As for the architecture, to validate the generality of our framework,
we employ Encoder-Decoder models such as U-Net, FCN, Res-Unet, and Unet++. The
Projector used in personalized contrastive learning is a two-layer MLP. The first layer
consists of a linear layer followed by batch normalization and rectified linear units
(ReLU). The final MLP contains only a linear layer and ReLU activation, with an output
feature dimension of 256.

Baselines. We compare against centralized training, each client’s local training, and
a variety of personalized federated learning techniques as well as methods for learn-
ing a single global model and their fine-tuned analogues. Centralized training involves
collecting data from all clients and training a single model. Each client’s local training
trains a model using its own exclusive dataset. Among the personalized methods, we
choose FedRep, LG-FedAvg, APFL, and Ditto. Besides, LC-Fed and FedSM provide
effective improvements to the FedRep and APFL methods in personalized federated
medical image segmentation, respectively. For global FL methods, we choose FedAvg,
SCAFFOLD, and FedProx. To obtain fine-tuning results, we first train the global model
for the full training period, then each client then fine-tunes all of the model on its local
training data for 10 epochs.
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