A Supplementary Materials

A.1 Model Parameters and Hyperparameters

	Parameter	Value	
Model	Diffusion steps T	1000	
	Noise scheduler β	Cosine	
	Base channels	64	
	Depth	4	
	Channel multipliers	[1, 2, 3, 4]	
	Attention resolution	[16, 8, 4]	
	Attention heads	4	
	Model size (# parameters)	89M	
Training	Batch size	6	
	Optimizer	AdamW	
	Learning rate	5×10^{-4}	
	Weight Decay	1×10^{-6}	
	Dropout	0.0	
	Training Iterations	72K (96 hours)	
	EMA	0.999	
	Diffusion loss	MAE	
	Predefined task loss	MAE	
	Hardware	one NVIDIA A100 GPU	
Classification	Batch size	32	
	Optimizer	AdamW	
	Learning rate	0.005	
	Weight Decay	1×10^{-6}	
	Dropout	0.2	
	Training Iterations	5K	

A.2 Data Preprocessing

Fig. A.1: Data preprocessing steps for MRI and PET. Both scans have been preprocessed from the Alzheimer's disease neuroimaging initiative $(ADNI)^1$.

A.3 Additional Ablation Studies

Table A.2: Additional ablation studies on designs in PASTA, including alternative multi-modal fusion (direct feature concatenation (ConcatFeats)), positions to integrate conditions (conditioner arm (CondCond), both arms (CondBoth)).

Ablation	$\mathrm{MAE}(\%)\downarrow$	$\mathrm{MSE}(\%)\downarrow$, PSNR \uparrow	$\mathrm{SSIM}(\%)\uparrow$
ConcatFeats	3.61	0.48	24.04	85.00
PASTA (CondCond)	3.55	0.45	24.32	86.11
PASTA (CondBoth)	3.61	0.46	24.29	86.09
PASTA ($\lambda_{task} = 0.01$)	3.65	0.49	24.01	85.49
PASTA	3.45	0.43	24.59	86.29

¹ http://adni.loni.usc.edu/methods

A.4 Neurostat 3D-SSP Maps for PET Scans

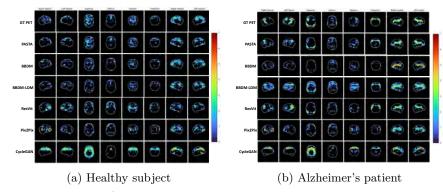


Fig. A.2: Neurostat² 3D-SSP, a statistical brain mapping technology, helps brain disorders diagnosis through PET by comparing cortical metabolic activity between patients and healthy controls, visualized as Z-score maps on the brain surface. We employ 3D-SSP to assess the accuracy of synthesized PET, including those from PASTA and baseline methods. Results reveal PASTA aligns closely with GT metabolic patterns in both healthy (left) and AD (right) subjects, showcasing its superior pathology preservation. Other models fail to recover the pathology evidence correctly and sometimes introduce non-existent abnormality.

A.5 Fairness Evaluation

Table A.3: We demonstrate the MAE of the synthesized PET from test samples compared to the real PET across demographics. The results indicate that the errors across different groups exhibit minimal variance and the differences are statistically insignificant (after comparing each group against the remaining samples, using the Wilcoxon rank-sum test, and applying a Bonferroni correction for multiple testing, all the p-values exceed the threshold of 0.05). Thus, it suggests that PASTA demonstrates a uniform performance, maintaining equitable accuracy across all examined demographic categories.

	01	0
Demographics	Groups	MAE (%) \downarrow
Age	< 60 60 - 70 70 - 80 > 80	$\begin{array}{r} 3.55 \pm 0.55 \\ 3.30 \pm 0.36 \\ 3.44 \pm 0.50 \\ 3.66 \pm 0.67 \end{array}$
Gender	Male Female	$\begin{array}{c} 3.52\ \pm\ 0.57\\ 3.35\ \pm\ 0.41\end{array}$
Diagnosis	CN AD MCI	$\begin{array}{c} 3.31 \pm 0.44 \\ 3.59 \pm 0.46 \\ 3.47 \pm 0.56 \end{array}$
Total	3.45 ± 0.51	

² https://neurostat.med.utah.edu/