Centerline Boundary Dice Loss for Vascular Segmentation

Theoretical Analysis of clDice Variants. This section delves into the theoretical foundations and geometric sensitivities of cl-X-Dice metrics in vascular segmentation. We introduce three theorems to elucidate the behavior and computation of cl-X-Dice metrics:

Theorem 1. For vertical translations along skeleton lines without deformation, cl-M-Dice coefficient is sensitive to translations of mask V within radius R, whereas clDice remains invariant.

Proof. In 2D, cl-M-Dice is defined thus (extendable analogously to 3D):

$$Tprec(S_{\rm P}, S_{\rm L}, V_{\rm L}) = \frac{|S_{\rm P} \cap D_{\rm L}|}{|R_{\rm P} \cap (U - S_{\rm L})| + |S_{\rm P} \cap R_{\rm L}|}$$
(1)

$$\operatorname{Tsens}(S_{\mathrm{L}}, S_{\mathrm{P}}, V_{\mathrm{P}}) = \frac{|S_{\mathrm{L}} \cap D_{\mathrm{P}}|}{|R_{\mathrm{L}} \cap (U - S_{\mathrm{P}})| + |S_{\mathrm{L}} \cap R_{\mathrm{P}}|}$$
(2)

Under vertical translations maintaining constant radius, $|S_{\rm P} \cap R_{\rm L}|$ equals $|S_{\rm L} \cap R_{\rm P}|$. This reduces cl-M-Dice's denominator to $|R_{\rm P}|$ (and analogously for $R_{\rm L}$), making its sensitivity dependent solely on the numerator. Hence, cl-M-Dice reacts to spatial displacements of V within R. Conversely, clDice, assessing overlap between S and V, is not influenced by these variations.

Theorem 2. cl-S-Dice, unlike clDice, is sensitive to radius variations at the skeleton under deformation without perpendicular translation. In cases of complete overlap, cl-S-Dice equals clDice with a value of 1.

Proof. In 2D, cl-S-Dice is defined thus (extendable analogously to 3D):

$$\operatorname{Tprec}(S_{\mathrm{P}}, S_{\mathrm{L}}, V_{\mathrm{L}}) = \frac{|R_{\mathrm{P}} \cap V_{\mathrm{L}}|}{|R_{\mathrm{P}}|}, \quad \operatorname{Tsens}(S_{\mathrm{L}}, S_{\mathrm{P}}, V_{\mathrm{P}}) = \frac{|R_{\mathrm{L}} \cap V_{\mathrm{P}}|}{|R_{\mathrm{L}}|}$$
(3)

For clDice $\neq 1$ (partial overlap), changes in radius $(R_{\rm P}, R_{\rm L})$ affect both $|R_{\rm P} \cap V_{\rm L}|$ and $|R_{\rm L} \cap V_{\rm P}|$. Specifically, with $S = \{s_i, b_j^{\rm s} \mid i \in [1, n], j \in [1, m]\}$ and $R = \{r_i \cdot s_i, b_j^{\rm s} \mid i \in [1, n], j \in [1, m]\}$, variances in r_i at any s_i modify cl-S-Dice. When clDice = 1 (complete overlap), $|R_{\rm P} \cap V_{\rm L}| = |R_{\rm P}|$ and $|R_{\rm L} \cap V_{\rm P}| = |R_{\rm L}|$, aligning cl-S-Dice with clDice, highlighting cl-S-Dice's sensitivity to radius changes in other scenarios.

Theorem 3. cl-X-Dice enhances geometric sensitivity and compensates for diameter differences while preserving clDice's topological integrity.

Proof. The cl-X-Dice metric, through the incorporation of variables $Q_{\rm sl}, Q_{\rm sp}, Q_{\rm vl}$, and $Q_{\rm vp}$, offers an advanced sensitivity to geometric alterations, including size and shape variability, while upholding the topological preservation traits of clDice.

$$\operatorname{Tprec}(S_{\mathrm{P}}, S_{\mathrm{L}}, V_{\mathrm{L}}) = \frac{|Q_{\mathrm{sp}} \cap Q_{\mathrm{vl}}|}{|Q_{\mathrm{sp}} \cap Q_{\mathrm{spvp}} \cap (U - S_{\mathrm{L}})| + |Q_{\mathrm{sp}} \cap Q_{\mathrm{slvl}}|}$$
(4)

$$\operatorname{Tsens}(S_{\mathrm{L}}, S_{\mathrm{P}}, V_{\mathrm{P}}) = \frac{|Q_{\mathrm{sl}} \cap Q_{\mathrm{vp}}|}{|Q_{\mathrm{sl}} \cap Q_{\mathrm{slvl}} \cap (U - S_{\mathrm{P}})| + |Q_{\mathrm{sl}} \cap Q_{\mathrm{spvp}}|}$$
(5)

Eq. 4 and Eq. 5 represent a balanced approach, maintaining topological accuracy while adapting to geometric variances, thus achieving an equilibrium between topological integrity and geometric precision.

		CoW Anterior Variants			CoW Posterior Variants		
		No Acom	Port	3dl A2 Acom	LPcom R-Pcom	Lagan Balan Balan	LECH BA A.P.C.4
		(n=11)	(n=2)	(n=5)	(n=4)	(n=6)	(n=8)
nnU-Net	CE+Dice CE+Dice+clDice CE+Dice+cbDice	$0\% \\ 64\% \\ 64\%$	$0\% \\ 50\% \\ 50\% \\ 50\%$	$0\% \\ 0\% \\ 40\%$	$0\% \\ 75\% \\ 75\%$	$17\% \\ 67\% \\ 83\%$	50% 75% 75%
SwinUNETR	CE+Dice CE+Dice+clDice CE+Dice+cbDice	$36\% \\ 45\% \\ 45\%$	$0\% \\ 50\% \\ 50\% \end{cases}$	$20\% \\ 0\% \\ 20\%$	100% 75% 100%	67% 100% 100%	50% 63% 88%
NexToU	CE+Dice CE+Dice+clDice CE+Dice+cbDice	55% 73% 73%	50% 50% 50%	40% 40% 60%	50% 100% 100%	50% 67% 67%	$50\%\ 63\%\ 75\%$

Table 1. Cow variant topology matching performance on the TopCow 20	JOW 2023.
---	-----------

Category	Abbreviation	Full Name		
	ВА	Basilar Artery		
	R-PCA	Right Posterior Cerebral Artery		
	L-PCA	Left Posterior Cerebral Artery		
Non communicati	R-ICA	Right Internal Carotid Artery		
Non-communicating	R-MCA	Right Middle Cerebral Artery		
arteries	L-ICA	Left Internal Carotid Artery		
	L-MCA	Left Middle Cerebral Artery		
	R-ACA	Right Anterior Cerebral Artery		
	L-ACA	Left Anterior Cerebral Artery		
	R-Pcom	Right Posterior Communicating Artery		
Communicating	L-Pcom	Left Posterior Communicating Artery		
arteries	Acom	Anterior Communicating Artery		
	3rd-A2	A2 segment of the Anterior Cerebral Artery		

 Table 2. Classification of the Cerebral Arteries in the Circle of Willis