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A Pretraining Details

ASA: We independently pretrained ASA on the AMOS2022 dataset for the
major evaluations and on the LUNA16 dataset for the ablation study. Both
models follow the same pretraining protocol. In phase 1, the volumes are resized
to 1×128×128×128, with the sub-volume size 16× 16× 16, leading to 512 unique
shuffleable sub-volumes and coordinates. The volume in phase 2 is up-sampled
to 160× 160× 160 before two spatially-related crops sized 1×128×128×128 are
obtained. The Swin UNETR architecture is employed as both the student and
teacher networks. We followed the default network configuration with patch size
= 2, window size =7, feature size = 48, layer depth = (2, 2, 2, 2), and attention
head number = (3, 6, 12, 24). We optimize the student model using the SGD
optimizer with a momentum of 0.9 and a cosine learning rate scheduler, starting
with a base learning rate of 0.001 and a learning rate warmup period of 5 epochs.
The training data, with a batch size of 12, is distributed across 4 Nvidia A100
GPUs, each with 80 GB of memory. The model undergoes pretraining for 400
epochs. A stop-gradient operator is applied to the teacher, which is updated
using an iteration-wise EMA of the student parameters, starting with an initial
momentum of 0.9.
SimMIM We pretrain the SimMIM baseline on AMOS2022 dataset, adhering
to the official implementation and implementing the method in 3D on the Swin
UNETR using its default configuration. Similar to ASA, the volumes are first
resized to 1×128×128×128, with each sub-volume size of 16× 16× 16 masked
at a 50% ratio. The optimization and learning rate scheduling strategy are the
same as those used in ASA pertaining.
Swin UNETR undergoes a pretraining phase involving three common self-
supervised learning tasks on five publicly accessible CT datasets. We obtained
the pretrained model from its official GitHub release. Given that only the encoder
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weights were available, we randomly initialized the decoder for all subsequent
evaluations in downstream tasks.

Table S1 summarizes and compares the pretraining tasks, datasets, and the
number of training samples between ASA and baseline pretrained models.

Table S1: A concise comparison of self-supervised pretraining tasks, datasets, and
the number of training samples between ASA and baseline pretrained models.
Method Name Pretrianing Tasks Dataset (# Samples for pretraining) Organs

ASA
Order prediction, AMOS2022 (#240 ) Abdomenappearance recovery,

global&local consistency LUNA16 (#843) Lung

Swin UNETR
Rotation, LUNA16, LiDC, TCIA Covid19 Chest CT,

masked sub-volume recovery, HNSCC, head & neck cancer,
contrastive learning TCIA Colon (#5,050) abdomen and pelvis

SimMIM Masked sub-volume recovery AMOS2022 (Totally #240 ) Abdomen

B Downstream Tasks

We fine-tune the ASA model and baseline models on diverse abdomen organ
segmentation tasks. In the preprocessing step for all tasks, we first re-sample all
scans to a uniform voxel space, (1.5 (2.0 for BTCV), 1.5, 1.5) for z, x, and y
dimensions. Subsequently, we clip the intensity values within the range of -175
to 250 and normalize them to a scale between 0 and 1. Moreover, during train-
ing, we randomly sample 128× 128× 128 voxels, incorporating spatial padding
if any dimension is smaller than the specified input size. Data augmentation
techniques, including random flips, rotations, and intensity shifts, are employed
during training with probabilities of 0.1, 0.1, and 0.5, respectively. We fine-tune
all tasks utilizing the AdamW optimizer with a learning rate of 1e−4. The train-
ing is performed on the Dice similarity coefficient loss for 30,000 iterations, em-
ploying a batch size of 1. The implementation of all downstream tasks is carried
out using PyTorch1 and MONAI2 and is run on a single NVIDIA A100 GPU.
In each experiment, we perform five independent runs and present the average
Dice score as the metric for evaluating the experiment results. For linear prob-
ing, we initialize the pretrained model’s weights and then freeze the backbone
while allowing the decoder to undergo fine-tuning.
BTCV: The Beyond the Cranial Vault (BTCV) dataset comprises CT scans
from 30 patients, with each scan accompanied by 14 manual segmentation an-
notations. These annotations consist of 1 background and 13 different organs.
Following the approach in [6,2], we establish a split of 24 samples for training and

1 https://pytorch.org/
2 https://monai.io/
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6 samples for testing. We formulated a 14-class segmentation task, encompassing
segmenting background, spleen, right kidney, left kidney, gallbladder, esophagus,
liver, stomach, aorta, inferior vena cava, portal vein, splenic vein, pancreas, right
adrenal gland, and left adrenal gland.
Pancreas-CT: The Pancreas-CT dataset [5] comprises 80 abdominal contrast-
enhanced 3D CT scans from 53 male and 27 female subjects, each scan paired
with 2 manual segmentation annotations for background and pancreas. Following
the protocol outlined in [4], a split of 64 samples for training and 16 samples for
testing is established. We have formulated a 2-class segmentation task, including
the background and pancreas classes.
LiTS: The Liver Tumor Segmentation Benchmark (LiTS) [1] comprises 130 CT
scans, each paired with 3 manual segmentation annotations. These annotations
include 1 for the background, 1 for the liver organ, and 1 for the liver tumor.
Following the methodology outlined in[4], we establish a split of 94 samples for
training and 36 samples for testing. The segmentation task is structured as a
three-class problem, encompassing the background, liver, and liver tumor.
AMOS2022: The Multi-Modality Abdominal Multi-Organ Segmentation Chal-
lenge (AMOS2022) [3] consists of 360 CT scans, each scan paired with voxel-level
annotations for 15 abdominal organs and 1 background class. Adhering to the
official training split of 240 samples and 120 samples for testing, we formulated
a 16-class segmentation task. This task includes segmenting the background,
spleen, right kidney, left kidney, gall bladder, esophagus, liver, stomach, aorta,
postcava, pancreas, right adrenal gland, left adrenal gland, duodenum, bladder,
and prostate/uterus.

Below is a brief summary of the aforementioned downstream tasks, including
the number of training/testing samples and the target organs.

Table S2: A brief information of downstream tasks, number of training/ testing
samples, and target organs.

Tasks Train/ Test Organs (Excluding Background)

Beyond the Cranial Vault (BTCV) 24/ 6

Spleen, Right kidney, Left kidney, Gallbladder,
Esophagus, Liver, Stomach, Aorta,

Inferior vena cava, Portal and splenic veins
Pancreas, Left and right adrenal glands.

Pancreas-CT (TCIA) 64/ 16 Pancreas

Liver Tumor Segmentation Benchmark (LiTS) 96/ 36 Liver, liver Tumor

Multi-Modality Abdominal Multi-Organ

240/ 120

spleen, right kidney, left kidney,
gallbladder, esophagus, liver, stomach,

Segmentation Challenge aorta, inferior vena cava, pancreas,
(AMOS2022) right adrenal gland, left adrenal gland,

duodenum, bladder, prostate/uterus
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C Additional Experiment Results and Ablation Study

Table S3: Supplementary to Table 1 with standard deviation measurements,
ASA achieves the highest average dice score in segmenting all organs compared
to SoTA self-supervised methods. Specifically, ASA outperforms competitors in
segmenting 9 out of 12 organs.
Methods/ Organs‡ Spl RKid LKid Gall Eso Liv Sto Aor IVC Vins Pan AG Avg.

SimMIM 92.03±0.93 93.66±0.67 92.13±1.32 69.16±2.22 75.06±2.07 96.21±0.21 76.36±1.23 89.80±0.39 83.91±0.87 72.46±1.08 73.61±1.45 68.24±0.71 81.89±1.10
Swin UNETR 95.30±0.35 94.29±0.26 94.22±0.30 74.01±3.68 76.35±1.23 96.71±0.08 80.56±1.44 90.42±0.27 84.70±0.54 75.12±0.33 80.61±0.99 67.25±1.00 84.13±0.87

ASA 96.89±0.85 94.28±0.15 94.10±0.06 75.53±1.35 76.66±0.84 96.79±0.13 82.42±1.97 92.03±2.22 86.02±0.70 74.77±0.59 80.98±1.39 70.73±0.34 85.10±0.88
‡ Spl: spleen, RKid: right kidney, LKid: left kidney, Gall: gallbladder, Eso: esophagus, Liv: liver, Sto: stomach, Aor: aorta, IVC: inferior vena cava, Veins: portal and splenic veins, Pan: pancreas,
AG: left and right adrenal glands.
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D Pseudocode for ASA’s Alternate Pretraining

Algorithm 1 One round of ASA alternate pretraining
Data: Input patient volumes: S = {S1, S2, ..., SM}, Si ∈ RC×D×H×W

Functions: Data augmentation: Fperm(·), Fsrc(·), Local sub-volume matching: FM (·);
Order prediction loss: Lvop; Appearance recovery loss: Lvar; Global con-
sistency loss: Lglobal

θs,θt
; Local consistency loss: Llocal

θs,θt ; Loss update by SGD
optimizer: Updatesgd(·, ·)

Trainable Parameters (Randomly Initialized): Student’s encoder and decoder:
genco
θs (·), gdecoθs (·)

Stop Gradient: Teacher’s encoder and decoder: genco
θt (·), gdecoθt (·)

Hyperparameters: EMA Momentum: κ; Loss regularization parameter: λvop, λvar,
λglobal, λlocal

{genco
θt , gdecoθt } ← {g

enco
θs , gdecoθs } // initialize teacher with student’s parameters

/* train student for one epoch on the sub-volume order prediction and
volume appearance recovery task */

for Si in S1, S2, ..., SM do
Sperm
i , Cpermi = Fperm(Si);

Pvo
i , ys = genco

θs (Sperm
i ),;

_, yt = genco
θt (Si);

Pva
i = gdecoθs (genco

θs (Sperm
i ))

Loss = λvop ∗ Lvop(Pvo
i , Cpermi ) + λvar ∗ Lvar(Pva

i , Si) + λglobal ∗ Lglobal(yt, ys) ;

Update({genco
θs , gdecoθs }, Loss);

{genco
θt , gdecoθt } ← κ{genco

θt , gdecoθt }+ (1− κ){genco
θs , gdecoθs };

end
/* train student for one epoch on learning global consistency */
for Si in S1, S2, ..., SM do

Crop1, Crop2 = Fsrc(Si);

ys, yt, ys, yt = genco
θs (Crop1), g

enco
θt (Crop2);

Loss = Lglobal
θs,θt

(ys, yt) + Llocal
θs,θt(FM (ys, yt)) ;

Update(genco
θs , Loss);

{genco
θt } ← κ{genco

θt }+ (1− κ){genco
θs };

end
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