Appendix of Advancing Brain Imaging Analysis Step-by-step via Progressive Self-paced Learning

Anonymous

Anonymous

1 Proof

In PSPD, the paced curriculum is divided into two folds: based on the current and the past state of the model. For each term, it can be obtained as follows:

$$L = \frac{1}{N} \sum_{i}^{N} w_i l_i + R_\lambda(w_i) \tag{1}$$

Through the concurrent optimization of the model parameters denoted as θ and the importance weights represented by w utilizing an Alternative Optimization Strategy (AOS) with a gradually increasing age parameter, the capability to automatically integrate additional samples is augmented. Moreover, given fixed model parameters θ the optimal problem becomes

$$\min_{w_i \in [0,1]} w_i l_i + R_\lambda(w_i) \tag{2}$$

The optimal solutions for the hard and soft strategies are provided by the following propositions.

Proposition 1. The definitions of $R_{\lambda}^{hard}(w_i, l_i)$ and the closed-form solutions $w_i^{hard}(l_i, \lambda)$ are given by

$$R_{\lambda}^{hard}(w_i, l_i) = -\lambda w_i; w_i^{hard}(l_i, \lambda) = \begin{cases} 1, & \text{if } l_i < \lambda \\ 0, & \text{if } l_i \ge \lambda \end{cases}$$
(3)

Proof. For the hard regularizer $R_{\lambda}^{hard}(w_i, l_i)$, the optimization problem becomes

$$\min_{w_i \in [0,1]} w_i l_i - \lambda w_i = (l_i - \lambda) w_i \tag{4}$$

If $l_i < \lambda$, the minimum is achieved when $w_i = 1$. Conversely, if $l_i \ge \lambda$, the minimum is achieved when $w_i = 0$. Therefore, the optimization result precisely corresponds to the threshold defined in Equation 3.

corresponds to the threshold defined in Equation 3. **Proposition 2.** The definitions of $R_{\lambda}^{soft}(w_i, l_i)$ and the closed-form solutions $w_i^{soft}(l_i, \lambda)$ are given by

$$R_{\lambda}^{soft}(w_i, l_i) = \lambda(\frac{1}{2}w_i^2 - w_i); w_i^{soft}(l_i, \lambda) = \begin{cases} 1 - \frac{1}{\lambda}w_i, & \text{if } l_i < \lambda\\ 0, & \text{if } l_i \ge \lambda \end{cases}$$
(5)

2 F. Author et al.

Proof. For the soft regularizer $R_{\lambda}^{soft}(w_i, l_i)$, the optimization problem becomes

$$\min_{w_i \in [0,1]} w_i l_i - \lambda (w_i - \frac{1}{2}w_i^2) = \frac{\lambda}{2}w_i^2 - (\lambda - l_i)w_i$$
(6)

If $l_i \geq \lambda$, the minimum is achieved when $w_i = 0$. However, if $l_i < \lambda$, the optimum is determined by differentiating the function with respect to w_i and setting the result to zero, giving

$$w_i = 1 - \frac{1}{\lambda} l_i \tag{7}$$

The optimization result is precisely the threshold obtained by Equ.5

2 Pseudo-Code

Algorithm 1: Progressive Self-paced Learning	
Input: Training Dataset $D_{train} = \{(x_i, y_i),\}$, Student model S_{θ} , Teacher	
	model $T_{\theta}, \lambda_{\varphi}$ -scheduler $\lambda_{\varphi}(t), \lambda_{w}$ -scheduler $\lambda_{w}(t)$
Output: Parameters θ of student model	
1 f	or $Epoch = 1,, T$ do
2	Update λ_{φ} and λ_{w} by $\lambda_{\varphi} \leftarrow \lambda_{\varphi}(t)$ and $\lambda_{w} \leftarrow \lambda_{w}(t)$;
3	Determine the current curriculum by S_{θ} on dataset D using
	$l_i^w = L_{CE}(p^S(x_i), y_i);$
4	Compute the current curriculum weight $w \leftarrow w(l_i^w, \lambda);$
5	if $Epoch = 1$ then
6	Train the student model S_{θ} by the L_{PCL} with weight w
7	else
8	Determine the past curriculum by S_{θ} on dataset D using
	$l_i^{\varphi} = L_{CE}(p^T(x_i), y_i);$
9	Compute the past curriculum weight $\varphi \leftarrow \varphi(l^{\varphi}, \lambda);$
10	Train the student model S_{θ} by L_{PCL} and L_{PCD} with the weights w, φ ;
11	Update the teacher model $T_{\theta} \leftarrow S_{\theta}$;
12	end
13 end	
14 return parameters θ of student model S_{θ}	